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Abstract

Illumination affects the appearance of an object in numerous ways, and the resulting variation in
appearance is a major source of difficulty for designing many image-based applications such as face
recognition. Partially because of this, the importance of understanding illumination effects has long
been appreciated. However, only in the past few years, with the emergence of a wealth of new ideas and
insights, a systematic and principled approach to illumination modelling has become possible. Some
notable developments include the introduction of spherical harmonics for modelling illumination,
the surprising result of non-existence of illumination invariants, and the idea of illumination cone.
Accompanying these advances in illumination modelling are a number of recently published face
recognition algorithms based on these new understandings of illumination effects. In this paper, we
present an informal account of some of these exciting recent developments in studying illumination.
In the process, we also provide a brief survey on these new face recognition algorithms, discussing
their details, implementations and performances.

0.1 Introduction
Our experience in this predominantly visual world is enriched greatly by the diverse ways the world

can be illuminated. While this diversity makes our world fascinating, it also makes recognition from
images, face recognition in particular, difficult. As is evident in Figure 1, the effect of illumination
on the appearance of a human face can be striking. The four images in the top row are images of an
individual taken with the same viewpoint but under different external illumination conditions. The
four images in the bottom, on the other hand, are images of four individuals taken under the same
viewpoint and lighting. Using the most common measure of similarity between pairs of images, the
L2-difference1, it is not surprising to learn that the L2-difference between any pair of images in the
bottom is always less than the L2-difference between any pair of images from the top row. In other
words, simple face recognition algorithms based purely on L2-similarity are doomed to fail for these
images. This result corroborates well the sentiment echoed through the often-quoted observation
made more than a decade ago that “the variations between the images of the same face due to
illumination ... are almost always larger than image variations due to change in face identity”[23].

Needless to say, a robust recognition system must be able to, among other things, identify an in-
dividual across variable illumination conditions. For decades, feature-based methods such as [13][18]
(see surveys in e.g. [7] and references in [12]) have used properties and relations (e.g. distances and
angles) between facial features such as eyes, mouth, nose and chin to perform recognition. However,
reliable and consistent extraction of these features can be problematic under difficult illumination
conditions, as images in Figure 1 clearly indicate. In fact, it has been claimed that methods for face
recognition based on finding local image features and inferring identity by the geometric relations of
these features are ineffective [6]. Image-based, or appearance-based, techniques (e.g. [24][32][34]),
offer a different approach. For this type of algorithms, local image features no longer play significant
roles. Instead, image-based techniques strive to construct low-dimensional representations of images
of objects that, in the least square sense, faithfully represent the original images. For the partic-
ular problem of face recognition under varying illumination, some of the most successful methods
(e.g. [2][8][12][21][31][37]) are image-based. For each person to be recognized, these algorithms use a

1For images with same number of pixels n, the L2-difference between a pair of images is simply the usual L2-
difference between the two corresponding vectors in Rn.



Figure 1: Striking effects of illumination on the appearances of a human face. Top Row: Images
are taken with the same viewpoint but under different illumination conditions. Bottom Row:
Images of four different individuals taken under the same viewpoint and illumination condition.

small number of (training) images to construct a low-dimensional representation of images of a given
face under a wide range of illumination conditions. The low-dimensional representation is (except
[8]) invariably some linear subspace in the image space, and the linearity makes the recognition
algorithms efficient and easy to implement. The actual recognition process is straightforward and
somewhat trivial: each query image is compared to each subspace in turn, by computing the usual
L2-distance between a linear subspace and an image (in vector form). The recognition result is
the person in the database whose linear subspace has the minimal L2-distance to the query image.
What is non-trivial, however, is the discovery of the correct language and mathematical framework
to model the effects of illumination [2][4][27], and the application of these illumination models to
the designs of efficient face recognition algorithms [2][8][12][21][31][37] that explicitly model lighting
variability using only a small number of training images. While pairwise L2-comparisons between
images would have failed miserably, L2-comparisons between a query image and suitably-chosen
(according to the illumination model) subspaces are robust against illumination variation.

Figure 1 illustrates the two main elements in modelling illumination effects: the variation in pixel
intensity and the formation of shadows. As lighting varies, the radiance at each point on the object’s
surface also varies according to its reflectance . In general, surface reflectance can be described by
a 4D function Ω(θi, φi, θo, φo), the Bidirectional Reflectance Distribution Function (BRDF), which
gives the reflectance of a point on a surface as a function of the illumination geometry (θi, φi) and
viewing geometry (θo, φo). (See Figure 2). A full BRDF with four independent variables is difficult
to model and work with, e.g.[35]. Fortunately for face recognition, the much simpler Lambertian
model [20] has been shown to be both sufficient and effective [4][12] for modelling the reflectance
of human faces: the radiance (pixel intensity) I at each surface point is given by the inner product
between the unit normal vector ~n scaled by the albedo value ρ and the light vector ~L, which encodes
the direction and magnitude of incident light coming from a distance,

I(~L) = ρ max(~L · ~n, 0). (1)

The lambertian model effectively collapses the usual 4D BRDF Ω into a constant function with value
ρ. In particular, a lambertian object appears equally bright from all viewing directions. We note
that Equation 1 is linear on the image level in the sense that the image of an object produced by
two light sources is simply the sum of the two images produced by the sources individually. This,
of course, is the familiar superposition principle of illumination, and it is the source of linearity
appearing in all illumination models discussed below. However, because of the presence of the max
term, Equation 1 is only quasi-linear in ~L: I(~L1+~L2) 6= I(~L1)+I(~L2) in general. This quasi-linearity
in ~L is responsible for several tricky points in analyzing illumination effects, and it is related to the
formation of attached shadows.

Shadows naturally account for significant portion of the variation in appearances. On a surface,



two types of shadows can appear: attached shadows and cast shadows (Figure 2). An attached
shadow is formed when there is no irradiance at a point on surface. In other words, when the light
source is on the “back side” of the point. This condition can be summarized concisely as ~n · L < 0,
with ~n the normal vector. We note that the equality,I(~L1 + ~L2) = I(~L1) + I(~L2), fails precisely at
pixels such that ~n ·L1 < 0 or ~n ·L2 < 0, i.e., most pixels in attached shadow. Cast shadows, on the
other hand, are simply shadows the object casts on itself. Clearly, cast shadows are related to the
object’s global geometry, and local information such as normals does not determine their formation.
Consequently, they are considerably more difficult to analyze (see [19], however).

In this paper, we discuss recent advances in modelling illumination effects [2][4][27] and various
face recognition algorithms based on these foundational results [2][8][12][21][31][37]. At first glance,
modelling the variability in appearance of a human face under all lighting conditions may seem to
be intractable since, after all, the space of all lighting conditions is, in principle, infinite dimensional.
However, it turns out that the variability caused by illumination can be effectively captured using
low-dimensional linear models. This can be largely attributed to the 1) reflectance and 2) geometry
of human faces. While human faces are generally not lambertian (as the often oily and specular
forehead demonstrates), they can nevertheless be approximated well by one. That is, except for cast
shadow, intensity variation and attached shadow can be succinctly modelled using only Equation 1.
In fact, without the presence of cast shadows, illumination modelling for a lambertian object can
be formulated under an elegant framework using spherical harmonic functions [2][27], and precise
results concerning the dimensionality of the approximating subspaces and the faithfulness of the
approximations can be given. Furthermore, image variation due to illumination can be completely
characterized by enumerating a finite number of basis images [4]. Although these foundational results
only deal with the ideal case of convex Lambertian objects (where cast shadows are absent), they
nevertheless form the basis for the subsequent developments. It is largely due to the geometry of
human faces that the successful applications of these ideas to face recognition can be made possible.
While human face are generally not convex, they are quite nearly so, as the smoothly-curved forehead
and almost-planar cheeks attest to (Figure 2). This renders the effect of cast shadows, although
appears to be formidable at times, to be manageable. Several empirical results [9][12] have shown that
even with cast shadows included, the appearance model is still low-dimensional, and its dimension
is only slightly larger than the dimension predicted by the theory [2][27].

Figure 2: Right Coordinates system used in defining the Bidirectional Reflectance Distribution
Function (BRDF). ωi = (θi, φi) parametrizes the incoming lighting direction. ωo = (θo, φo) repre-
sents the viewing direction. n is the normal vector. Center Attached and cast shadows. Right
The formation of shadows on a human face. Attached shadows are in the upper region of the eye
socket. Cast shadows appear in the lower region of the eye socket and the lower part of the face.

This paper is organized as follows. In the following section, we discuss an important result
first appeared in [8] concerning the non-existence of illumination invariants. This interesting and
somewhat unexpected result raises several subtle issues regarding illumination and face recognition.
In the third section, the foundational results on illumination modelling are discussed. Section 4
contains a brief survey on several recently published face recognition algorithms based on these
foundational results. Their performances and other experimental results are discussed in section 5.
We conclude this paper with a short summary and remark on future work.

0.2 Non-Existence of Illumination invariants
Before delving into the details of various face recognition algorithms, we briefly discuss the im-

portant and interesting result of [8] on the non-existence of illumination invariants. Specifically, [8]
demonstrates that for any two images, whether they are of the same object or not, there is always



a family of lambertian surfaces, albedo patterns and light sources that could have produced them.
One consequence of this surprising result is quite counter-intuitive to our daily experiences: given
two images, it is not possible with absolute certainty to determine whether they were created by the
same or different objects. More specifically, [8] contains a proof of the following2:

Proposition 0.2.1 Given two images I and J , and any two linearly independent vectors ~s, ~l ∈ R3,
there exists a lambertian surface S such that the images of S taken under lighting conditions (point
sources at infinity) specified by ~s and ~l are I and J , respectively.

While the consequences of this proposition can be surprising, the motivation behind its proof, how-
ever, is straightforward. We remark that there is no analogous results for three or more images.

Let’s assume that the lambertian surface S is viewed from the direction (0, 0, 1), and S can be
written as (x, y, z = f(x, y)), with z ≥ 0 over some bounded rectangular region R in xy-plane. The
images, I, J , are then considered as some non-negative functions on R, i.e. I, J ∈ P, where P denote
the space of non-negative functions on R. The space of lambertian objects is then precisely P ×P,
with one factor for the geometry (z = f(x, y)) and the other for the albedo values. However, the
variability offered by pairs of images is also P×P. Therefore, given two fixed lighting conditions and
a pair of images, we expect (heuristically) that at least one Lambertian surface can be responsible
for the images. When the number of images is greater than two, we see that the variability in images
are much larger than the space of lambertian surfaces. Therefore, for a generic triplet of images, one
generally does not expect to find a lambertian surface that accounts for these images. Essentially
as we will see soon, the proof exploits the following under-determined system of linear equations (in
components of ~n):

I(x, y) = α(x, y)~s · n̂(x, y) = ~s · ~n(x, y), (2)

J(x, y) = α(x, y)~l · n̂(x, y) = ~s · ~n(x, y). (3)

Here, n̂(x, y) is the unit normal and ~n(x, y) = α(x, y)n̂(x, y) is the albedo-scaled normal vector. For
the case of three images, the analogous system will generally be invertible;therefore, a normal vector
can be determined uniquely at any point (x, y). However, the resulting normal vector field formed
by these normals determined point-wise will not be integrable [5] in general. So the inconsistency
among triplet of images can be detected. For a pair of images and linearly independent ~s,~l, because
there is always a family of normal vectors satisfying the above equations at any point, we can produce
an integrable normal field by choosing the normal at each point carefully.

To see how the proof works, we assume that the images I, J do not vanish simultaneously, I(x, y)+
J(x, y) > 0 for all (x, y). This implies in particular that the albedos α(x, y) is also non-vanishing.
The general case is only slightly more complicated. In addition, we also assume that ~s = (−1, 0, 1)
and ~l = (1, 0, 1). The extension to arbitrary ~s and ~l will become clear later. Under these assumptions,
let’s consider S along a scanline, y = c for some constant c (See Figure 3). Let Yc denote the plane
y = c. The intersection between S and Yc defines a curve ~c(t) = (x(t), y(t), z(t)). If ~c(t) satisfies the
differential equation

d~c

dt
= I~l − J~s ≡


dx
dt = I + J
dy
dt = 0
dz
dt = I − J

(4)

then because d~c
dt is a tangent vector of S, 0 = d~c/dt ·~n = (I~l−J~s) ·~n on ~c(t). For the system of ODEs

above, a unique solution ~c can be found by integration provided that an initial condition (a point in
Yc of the form (x, c, y)) is also given. If such initial point is given, ~c(t) does indeed stay on the plane
Yc because dy

dt = 0. Furthermore, because dx
dt > 0 by our assumption, x(t) is a strictly monotone

function. This implies that z(t) is a function of x(t) on the “slice” Yc ∩ S. It follows that we can
construct one particular S by specifying initial points along the left edge of the rectangular region R
and integrating across all scanlines. If the initial points are chosen to be a smooth curve, it follows
(e.g., [1]) that S will indeed be in the form (x, y, z = f(x, y)) for some smooth function f , and more

2In this discussion, we ignore the regularity assumptions. All surfaces and images are assumed to be infinitely
differentiable (C∞).



importantly, (I~l−J~s) ·~n = 0 everywhere on S. Because ~l ·~n and ~s ·~n can not vanish simultaneously
(since ~n is a multiple of (∂f

∂x , ∂f
∂y ,−1)), we have I(x, y) = α(x, y)~s · n̂ and J(x, y) = α(x, y)~l · n̂ at all

(x, y) for some positive function α, the albedos.
This almost completes the proof, except, alas, Equations 2 and 3 are not quite the same as

Equation 1. They will be so only if we can show that there is no (x, y) such that ~s ·~n < 0 or ~l ·~n < 0.
Also, we have to show that the lights ~l and ~s do not cast shadows on S; for otherwise, Equation 2
or 3 is not valid. Both can be easy demonstrated. Since n = (− ∂z

∂x ,− ∂z
∂y , 1) and ∂z

∂x = I−J
I+J (from

Equation 4), a quick calculation gives ~l ·~n = 1+ I−J
I+J and ~s ·~n = 1− I−J

I+J , which are both non-negative
everywhere on S. Next, we show that there is no cast shadows. We note that for p to be in cast
shadow under ~l (similarly for ~s), the ray p + t~l, t ≥ 0 must intersect S transversally (Figure 3), i.e.,
S must be on both sides of the ray. Since ~l has zero y-component, the ray and p are on the plane
Yc with c the y-component of p, i.e. we are over a scanline. So points of S that can cast shadow on
p must be on the right of p (and for ~s, they must be on the left). Points on the right of p are of the
form

q = p +
∫ t=w

0

(I~l − J~s) dt = p +
∫ t=w

0

Idt~l −
∫ t=w

0

Jdt~s = p + a~l − b~s.

for some w > 0 and non-negative numbers a, b. Because b is non-negative, this immediately shows
that S can not intersect the ray transversally, and hence p is not in shadow.

This completes the proof of the proposition for ~s = (−1, 0, 1) and ~l = (1, 0, 1). For general ~s,~l,
the proof above can be modified by defining the planes Yc to be the affine planes Yp generated by
~s and ~l: Yp = {x|x = p + a~s + b~l, p ∈ R3, a, b ∈ R}. This will ensure that each solution ~c(t) to
Equation 4 stays in one such plane. The rest of the proof carries through without much change.

Figure 3: Left: The surface S is defined over a rectangular domain R in the xy-plane. The
intersection Yc ∪ S defines the curve ~c(t). Right: On each plane Yc and any point q ∈ Yc ∪ S that
is to the right of p, because q = p + a~l − b~s for some non-negative a, b, q has to lie inside the cone
generated by ~l and −~s. Similarly, any point q that is to the left of p has to lie in the cone generated
by ~s and −~l.

0.2.1 Image Gradients as Illumination Insensitive Measures
The negative result on the existence of illumination invariant is not as devastating as one may

have thought. As far as face recognition is concerned, there are at least two ways out of this apparent
quandary. While determining whether two images are of the same object is impossible in principle,
nothing prevents us from doing so for three or more images. That is, we can increase the number
of training images for each person in the database, and if qualitatively and quantitatively sufficient
training images are available, un-determinacy can generally be avoided. We will discuss this type of
approach in the next section.

On the other hand, Proposition 0.2.1 can be largely attributed to the unrestricted access to the
space of lambertian objects, since we can always find some lambertian surface, however bizarre and
strange it may be, to account for any two images. For example, the above theorem implies that given
an image of Marilyn Monroe and one of Cary Grant, along with the light source directions, there
exists a lambertian surface that could produce these images. However, it is unlikely to be face-like.
Therefore, it makes sense to limit the space of available lambertian objects, e.g. to face-like objects.



Alternatively, let’s consider only planar lambertian objects. It follows directly from Equation 1
that the image gradient is a discriminative illumination invariant: given two images I and J of
some planar lambertian object taken under same viewpoint, their image gradients ∇I,∇J must be
parallel at every pixel where they are defined. This is obvious because for planar object, there is
only one surface normal and each image is simply a constant multiple of the albedo values with
the constant been determined by the illumination. While the pixel intensity can be any allowable
value given appropriate illumination, its derivative, the image gradient, cannot. Probabilistically,
the distribution of pixel values under varying illumination may be random, but the distribution of
image gradients is not.

Unfortunately, the dependence of image gradient on albedos is only part of the story. For general
non-planar surfaces, the image gradient (for a given light source ~s = (su, sv)) is related to both the
albedos (reflectance) and surface geometry:

∇I =

geometric︷ ︸︸ ︷
ûκusu + v̂κvsv + (∇α)~s · n̂︸ ︷︷ ︸

reflectance

. (5)

In the above, κv, κu are the two principal curvatures, and û, v̂ are the corresponding principal
directions at a given surface point3. For a planar object κv, κu = 0 and ∇I = (∇α)~s · n̂. The
geometric term in the equation above destroys the simple relation between image gradient and
albedo gradient that we have for planar objects. However, for the case of uniform albedos (i.e.
∇α = 0), a deeper analysis using only the geometric term above reveals that the image gradient
distribution is still not random. More specifically, for light sources with a directionally-uniform
distribution given by

ρs(~s = (su, sv, sn)) =
1

(
√

2πσ)3
e−

1
2σ2 (s2

u+s2
v+s2

n), sn ∈ [0,∞),

the image gradient distribution is

ρ(u, v) =
1

π
3
2 σ2κuκv

e
1

2σ2 (( u
κu

)2+( v
κv

)2).

This result strongly suggests that the joint distribution of two image gradients from two different
images under two random lighting should not be random either. In its most general form, the
probability density function for this joint distribution can be written as [8]:

ρ(r1, ϕ1, r2, ϕ2) =
∫

ρ(r1, φ1|κ, ~α)ϕ(r2, ϕ2|κ, ~α)dP (γ, κ, ~α), (6)

where P (γ, κ, α) is the probability measure on the non-observable random variables that include the
surface geometry (κ), albedos (α) and camera viewpoints (γ). In the expression above, ri and ϕi are
the magnitude and orientation of the image gradient, respectively. Equation 6 is only of theoretical
interest since the probability measure P on the non-observables is unknown. However, we can try
to reconstruct the distribution empirically using images of objects under varying illumination. For
this purpose, a slightly different joint distribution (on the angular difference of two image gradients),
ρ(r1, ϕ = ϕ1 − ϕ2, r2), is easier to work with.

In [8], 1280 images of 20 objects under 64 different illumination conditions were gathered. The
objects included folded cloth, a computer keyboard, cups, a styrofoam mannequin, etc. ρ(r1, ϕ, r2)
is estimated directly from a histogram of image gradients. A slice of the joint probability density ρ
is shown in Figure 4(Left). Note that for a planar (or piece-wise planar) lambertian object, ρ is a
delta function at ϕ = 0 (angular difference is 0). It is expected that with contribution from surface
geometry and other factors, ρ should be considerably more complicated for general objects. However,
the shape of ρ with its prominent ridge at ϕ = 0 does resemble that of a delta function. Surface

3Equation 5 is really an equation in terms of a coordinates system û, v̂ at the tangent space of the surface, not the
image plane. Following [8], we will ignore the effects of projection, and treat û, v̂ as directions in the image.



Figure 4: Left: (Courtesy of [8]) Empirical joint probability density of two image gradients
ρ(r1, ϕ, r2 = 50) under two random lighting conditions. Right: The magnitudes of first ten singular
values for the images in Figure 11. In this example, the first three eigenvalues account for more
than 97% of the energy. The four Eigenfaces corresponding to the largest four eigenvalues are also
displayed.

geometry accounts for most of the “spread” of the density from the line ϕ = 0. This shows that the
statistical regularity of scene radiance gradient does reflect the intrinsic geometry and reflectance
properties of surfaces, and this regularity can then be exploited for face recognition as we will detail
in Section 5.

0.3 Theory and Foundational Results
Let C denote the set of images of an object O under all possible illumination conditions. One of

the main goals of illumination modelling is to say something about C. We assume that the images
were taken under the same viewpoint, i.e. no pose variation, and the images are all of the same
size. By the usual rasterization, we can regard C as a subset of the image space Rn, with n the
number of pixels in the image. In this section, we discuss the important results of [2][4][27], which
give various characterizations of the set C when the object O is lambertian and convex. There are
two main themes, the effective low-dimensionality of C and its linearity.

Before moving on, we fix a few conventions and notations. Inter-reflections will be ignored
throughout all subsequent discussions, and all illumination conditions will be assumed to be ho-
mogeneous, i.e. generated by distant sources. In particular, if the distant source l is a point source,
then l can be represented as a 3-vector ~l such that |l| encodes the magnitude of the source and
the unit vector ~l/|~l| represents its direction. Note that the unit vector is a point on the sphere S2,
and conversely, every point ~p on S2 can represent some distant point source with direction ~p. More
generally, any illumination condition can be represented as a non-negative function on S2. For an
image I, we will use the same symbol I to denote both the image and its associated vector in the
image space.
0.3.1 Early Empirical Observations

Convexity and low-dimensionality are two important properties of C. Convexity is a simple
consequence of the superposition principle for illumination. For if I1 and I2 are two images taken
under two different illumination conditions l1 and l2, any convex combination of these two images:

J = aI1 + bI2, a, b ≥ 0, a + b = 1,

is also an image of the same object under a new illumination condition specified by al1 ∪ bl2, i.e. l1
and l2 are “turned on” simultaneously with attenuation factors a, b, respectively. This should not
be confused with the illumination given by the point distant source a~l1 + b~l2, when l1, l2 are distant
point sources.

The fact that for objects with diffuse, lambertian-like reflectance, the effective dimension of C is
small was also noticed quite early [9][15]. This can be demonstrated by collecting images of an object
taken under a number of different illumination conditions. If {I1, · · · , Im} are m such images, we can



stack them horizontally to form the intensity matrix I = [I1 · · · Im]. Singular value decomposition
(SVD) of I [14]:

I = UΣV t, (7)

gives the singular vectors as the columns of the matrix U , and the diagonal elements of Σ as the
singular values. Let {σ1, · · · , σm} denote the singular values in descending order. Incidently, the
singular vectors are usually called Eigenimages and in the case of face images, they are called,
appropriately, Eigenfaces [34]. The eigenimages can be used to approximate the original images
{I1, · · · , Im}, and if R denotes the subspace spanned by the k Eigenimages associated to the k
largest singular values, the L2 reconstruction error,

m∑
i=1

dist2L2(Ii, R) =
m∑

i=k+1

σ2
i . (8)

can be computed directly from the singular values. If σi turns out to be negligible for i > k, then
the entire collection of images can be effective approximated using the subspace R. In particular,
the effective dimension of {I1, · · · , Im} is simply the dimension of R, which is k.

Figure 4(Right) displays the magnitudes of the first ten singular values obtained by applying
SVD to a collection of 45 images of a human face (in frontal pose, and under 45 different point light
sources) shown in Figure 11 (Section 5). The magnitudes of the singular values decrease rapidly
after the first three singular values. In fact, the first three eigenvalues account for more than 97% of
the entire energy. Here, the energy is defined as

∑m
i=1 σ2

i . For a pure lambertian object with simple
geometry, this observation can be explained easily. Assuming {I1, · · · , Im} contain no shadows,
then, the intensity matrix I factored as

I = B · S = [~n1 · · ·~nn]t · [~s1 · · ·~sk] (9)

where B is a n-by-3 matrix containing the normals and albedos at each pixel, and si are the light
source directions. Since S can have rank at most 3, I also has rank at most 3, and hence there
are at most three non-zero singular values in Σ. For a general collection of images, the object is no
longer Lambertian with simple geometry, and the lighting conditions are not describable by point
sources. This means that there will be more than three non-zero singular values, and the extent
of this “spread of singular values” depends on how many of the idealized assumptions have been
violated.

In [9], eigen-analysis similar to the one above was applied to images of non-lambertian objects.
These include objects with specular spikes, small cast shadows and some other irregularities such as
partial occlusions. The conclusion from this empirical study is surprising in that 5± 2 Eigenimages
are sufficient to model objects with wide range of reflectance properties. As mentioned earlier,
3 at the lower end of 5 ± 2 can be used to model lambertian objects with simple geometry. In
their conclusion, the first few eigenimages describe the lambertian component, and the succeeding
eigenimages describe the specular component and specular spikes, shadows and so forth. This
result is particularly encouraging because human faces are generally non-lambertian. Still, a low-
dimensional linear representation is already sufficient to capture a large portion of possible image
variation due to illumination.
0.3.2 Modelling Reflectance and Illumination using Spherical Harmonics.

The effective low-dimensionality of C that we have just discussed clearly begs for explanations.
Somewhat surprisingly, this empirical observation can be elegantly explained via a signal processing
framework using spherical harmonics [2, 26, 27]. The key conceptual advance is to treat a Lambertian
object as some “low-pass filter” that turns complicated external illuminations into smoothly shaded
images. In the context of illumination, the signals are functions defined on the sphere, and spherical
harmonics are the analogues of the fourier basis functions.

First, we fix a local (x, y, z) coordinates system Fp at a point p on a convex lambertian object such
that the z-axis coincides with the surface normal at p. Let (r, θ, φ)4denote the spherical coordinates

4To conform with the notation used in spherical harmonics literature, θ denotes the elevation angle and φ denotes
the azimuth angle.



centered at p. Under the assumption of homogeneous light sources, the configuration of lights that
illuminates the object can be expressed as a non-negative function L(θ, φ) defined on S2. The
reflected radiance at p is then given by

r(p) = ρ

∫
S2

k(θ)L(θ, φ)dA = ρ

∫ 2π

0

∫ π

0

k(θ)L(θ, φ)sinθdθdφ, (10)

where ρ is the albedo, and k(θ) = max(cos θ, 0) is the Lambertian kernel. Note that this equation
is simply the integral form of Equation 1, in which we integrate over all possible incident directions
at p. Because the normal at p coincides with the z-axis, the Lambertian kernel is precisely the max
term in Equation 1. For any other point q on the surface, the reflectance is computed by a similar
integral as above. The only difference between the integrals at p and q is the lighting function L:
at each point, L is expressed in a local coordinates system at that point. Therefore, considered as
a function on the unit sphere, Lp and Lq differ by a rotation g ∈ SO(3) that rotates the frame Fp

to Fq. That is, Lp(θ, φ) = Lq(g(θ, φ)).
Since k(θ) and L(θ, φ) are now functions on S2, the natural thing to do next is to expand these

functions in terms of some canonical basis functions, and spherical harmonics offer a convenient
choice. Spherical harmonics, Ylm, are a set of functions that form an orthonormal basis for the set of
all square-integrable (L2) functions defined on the unit sphere. They are the analogue on the sphere
to the Fourier basis on the line or circle. Ylm, indexed by two integers l (degree) and m (order)
obeying l ≥ 0 and −l ≤ m ≤ l, has the following form:

Ylm(θ, φ) =


NlmP

|m|
l (cosθ)cos(|m|φ) if m > 0;

NlmP
|m|
l (cosθ) if m = 0;

NlmP
|m|
l (cosθ)sin(|m|φ) if m < 0;

(11)

where Nlm is a normalization constant that guarantees the functions Ylm are orthonormal in the
L2-sense: ∫

S2
Ylm Yl′m′dA = δmm′δll′ .

P
|m|
l is the associated Legendre functions whose precise definition is not important here (however,

see [33]). The formal definition of Ylm using spherical coordinates above is somewhat awkward to
work with. Instead, it is usually more convenient to write Ylm as a function of x, y, z rather than
angles. Each Ylm(x, y, z) expressed in terms of (x, y, z) is a polynomial in (x, y, z) of degree l:

Y00 =

√
1
4π

, (12)

(Y11;Y1−1;Y10) =

√
3
4π

(x; y; z), (13)

(Y21;Y2−1;Y2−2) =

√
15
4π

(xz; yz; xy), (Y20;Y22) =

√
5

16π
(3z2 − 1;

√
3(x2 − y2)) (14)

In other words, spherical harmonics of degree l are just the restrictions of some homogeneous poly-
nomials (in x, y, z) of degree l to S2. While degree-two polynomials in x, y, z are six-dimensional
(xy, yz, zx, x2, y2, z2), because x2 + y2 + z2 − 1 = 0 on S2, spherical harmonics of degree two are
only five-dimensional. Using polynomials, it is straightforward to see that a rotated spherical har-
monic is a linear superposition of spherical harmonics of same degree since a rotated homogeneous
polynomial of degree l is a polynomial of the same degree. Therefore, for a 3D rotation g ∈ SO(3),

Ylm(g(θ, φ)) =
l∑

n=−l

gl
mnYln(θ, φ). (15)

The coefficients gl
nm are real numbers and are determined by the rotation g.



With these basic properties of spherical harmonics in hand, the idea of viewing a lambertian object
as a “low-pass filter” can be made precise by expanding the lambertian kernel k(θ) in terms of Ylm.
Because k(θ) has no φ-dependency, its expansion, k(θ) =

∑∞
l=0 klYl0, has no Ylm components with

m 6= 0 (Equation 11). It can be shown [2, 27] that kl vanishes for odd values of l > 1, and the even
terms fall to zero rapidly; in addition, more that 99% of the L2-energy of k(θ)5 is captured by its first
three terms, those with l < 3. See Figure 5(Left). Because of these numerical properties of kl and
the orthogonality of the spherical harmonics, any high-frequency (l > 2) component of the lighting
function L(θ, φ) will be severely attenuated in evaluating the integral in Equation 10, and in this
sense, the Lambertian kernel acts as a low-pass filter. Therefore, the reflected radiance computed
using Equation 10 can be accurately approximated by the same integral with L replaced by L′,
obtained by truncating the harmonic expansion of L at l > 2, i.e. the spherical harmonics expansion
of L′ contains no Ylm with l > 2. Since rotations preserve the l-degree of the spherical harmonics
(rf. Equation 15), the same truncated L′ will work at every point. Let L′(θ, φ) =

∑9
i=1 liYi denote

the expansion of L′ and Yi the nine spherical harmonics with degree < 36. At any point q, we have

r(q) ≈ ρq

∫
S2

kq(g(θ))L′(θ, φ)dA = ρq

9∑
i=1

li

∫ 2π

0

∫ π

0

kq(g(θ))YidA, (16)

where g is the rotation that rotates the local frame Fq at q to the frame Fp. We can define the
nine harmonic images Ii whose intensity at each point (pixel) is Ii(q) = ρq

∫
S2 kq(g(θ))YidA: images

taken under the virtual lighting conditions specified by the nine spherical harmonics. Hence, the
pixel-wise approximation above translates into the approximation for images.

I ≈
9∑

i=1

liIi. (17)

If I is an image taken under some illumination condition L with li as the nine coefficients in L’s
truncated spherical harmonics expansion, I can be approximated by a linear combination of the
nine harmonic images using the same coefficients. The far-reaching consequence of this fact is that
although lighting conditions are infinite-dimensional (the function space for L(θ, φ)), the illumination
effects on a lambertian object can be approximated by a nine-dimensional linear subspace H, the
harmonic subspace spanned by the harmonic images Ii, i.e. C can be approximated well by H.

Harmonic Images

Equation 17 indicates the great importance of computing the harmonic images. Except for the first
spherical harmonic (which is a constant), all others have negative values and therefore, they do
not correspond to real lighting conditions. Hence, the corresponding harmonic images are not real
images, and as pointed out by [2]: “they are abstractions.” Nevertheless, they can be computed
quickly if the object’s surface normals and albedos are known.

Using the polynomial definition of spherical harmonics, the recipe for computing the nine har-
monic images Ii for (1 ≤ i ≤ 9) is particularly simple: for each pixel p, let ~np = (x, y, z) denote the
unit surface normal at p and ρp the albedo. The intensity value of Ii at p is given by

Ii(p) = ρpYi(x, y, z). (18)

Another way to compute the harmonic images is to simulate the images under harmonic lightings
by explicitly evaluating the integral ρp

∫
S2 kp(g(θ))YidA at every point p and taking into account

the cast shadows:
ρp

∫
S2

kp(g(θ, φ))νp(θ, φ)YidA, (19)

where νp(θ, φ) = 1 if the ray coming from direction (θ, φ) is not occluded by another point on the
surface. Otherwise, νp(θ, φ) = 0. Figure 5 shows the rendered harmonic images for a face taken from

5The energy of k(θ) is,
R

S2 k2(θ)dA, which is the convergent infinite sum
P∞

i=0 k2
l .

6Y1 = Y00, Y2 = Y11, Y3 = Y1−1, Y4 = Y10, Y5 = Y21, Y6 = Y2−1, Y7 = Y2−2, Y8 = Y20, Y9 = Y22
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Figure 5: Analysis using spherical harmonics Left: (Courtesy of [2]) Top: A graph representation
of the first eleven coefficients in the spherical harmonics expansion of the Lambertian kernel k(θ).
Bottom: the cumulative energy. Right: The nine harmonic images rendered by ray-tracing. For
examples of computing harmonic images without using ray-tracing (Equation 18), see [26].

the Yale Database. These synthetic images are rendered by sampling 1000 rays on a hemisphere,
and the final images are the weighted sum of 1000 ray-traced images. By using the 3D information,
these harmonic images also include the effects of cast shadows arising from the non-convex human
face.

0.3.3 Illumination Cones and Beyond
So far,we have shown that C, the set of images of a convex Lambertian object under all possible

illumination conditions, is a convex set in the image space, and C can be effectively approximated
by a nine-dimensional linear subspace. However, we still do not know what C is. An explicit
characterization of C was first studied and answered in [4]. This paper shows that for a convex
Lambertian object, C is a polyhedral cone in the image space, and its complexity (i.e., number of
generators) is quadratic in the number of distinct surface normals. In this subsection, we discuss this
result and some of its implications. First, we recall that a cone in Rn is simply a convex subset of Rn

that is invariant under non-negative scalings: if x is in the cone, then λx is also in the cone for any
non-negative λ. A polyhedral cone is simply a cone with a finite number of generators {e1, · · · , el}:
points of the cone are vectors x in Rn that can be expressed as some non-negative linear combination
of the generators, x = a1e1 + · · ·+ alel with a1, · · · , al ≥ 0.

For a general object (without assumptions on reflectance and geometry), it is straightforward to
establish that the set C is a convex cone, which is a direct consequence of the superposition property
of illumination. This is the simplest and also the only available characterization of C without any
limiting assumptions on reflectance or geometry. However, for the case of a convex and Lambertian
object, more can be said about C [4]:

Proposition 0.3.1 For a convex Lambertian object, the set C of images of an object under all
possible illumination conditions is a polyhedral cone.

The finiteness of the number of generators for C is the proposition’s main strength. Instead of just
an approximation, we know the entire geometry of C from a finite number of images. For a general
non-lambertian object, there is no analogous result.

Let I denote an image of a convex object with n pixels. Let B ∈ R3n be a matrix where each row
of B is the product of the albedo with the inward pointing unit normal for a point on the surface



projecting to a particular pixels7. Although the proposition deals with all possible illumination
conditions, we can actually focus our analysis on single distant sources, thanks to the superposition
principle. Thus, we need to examine the set U of images of a convex Lambertian surface created by
varying the direction and strength of a single point light source at infinity. It will turn out that U
can be decomposed into a collection of polyhedral subcones Ui indexed by the set S of shadowing
configurations:

U = {I|I = max(Bs, 0), ∀s ∈ R3} =
⋃
i∈S

Ui. (20)

As its name suggested, each element i ∈ S indexes a particular shadowing configuration, and Ui

indexed by i is a set of images, each with the same pixels in shadow and the same pixels illuminated
(images with the same “shadowing configuration”). Since the object is assumed to be convex, all
shadows are attached shadows. The technical part of the proof for the above proposition is then to
give a bound on the size of the set S as given in the following Lemma:

Lemma 0.3.2 The number of shadowing configurations is at most m(m − 1) + 2, where m ≤ n is
the number of distinct surface normals.

To see how to count the elements in S, we begin with a definition. As usual, we first ignore the
max term in Equation 20. The products of B with all possible light source directions and strengths
sweeps out a subspace in R3, and we call this subspace the illumination subspace L, where

L = {I|x = Bs, ∀s ∈ R3}.

Note that the dimension of L equals the rank of B. Since B is an n × 3 matrix, L will in general
be a 3-D subspace, and we will assume it to be so in the following discussion. The important point
now is to observe that L slices through different orthants of Rn. The most conspicuous one is the
intersection of L with the non-negative orthant of Rn, and the intersection is non-empty because
when a single light source is parallel to the camera’s optical axis, all visible points on the surfaces
are illuminated, and consequently, all pixels in the image have non-zero values, and the image has
no shadow. What can be said about the intersections of L with other orthants? Let Li denote the
intersection of L with an orthant i. Clearly, some components of x ∈ Li are always negative and
others always greater than or equal to zero. To turn x into a real image, we have to apply the max
term above and this leaves the non-negative components of x ∈ Li untouched, while the negative
components of x go to zero. Note that this operation is a linear projection Pi on Li that maps Li to
the closure of the non-negative orthant. We then clearly have the decomposition of U into subcones:

U =
⋃
i

Pi(Li),

Pi(Li) is a cone because Pi is linear and Li is a cone. In fact, we can identify each Pi(Li) with Ui in
Equation 20 because we can identify the set S with the set of orthants having non-empty intersection
with L, according to the discussion above. Although there are 2n orthants in Rn, we will see below
that L can only intersect at most n(n− 1) + 2 orthants.

Representing all possible light source directions by the sphere S2, we see that for a convex object,
the set of light source directions for which a given pixel in the image is illuminated corresponds to
an open hemisphere; the set of light source directions for which the pixel is shadowed corresponds
to the other hemisphere of points. The boundary is the great circle defined by ~n · s = 0, where
~n is the normal at the given pixel. Each of the n pixels in the image has a corresponding great
circle on the illumination sphere, and there are m distinct great circles in total, where m is the
number of distinct surface normals. The collection of great circles carves up the surface of S2 into a
collection of cells Si. See Figure 6. The collection of light source directions contained within a cell
Si on the sphere produces a set of images, each with the same pixels in shadow and the same pixels
illuminated. This, again, immediately identifies the set S with the set of cells Si, and hence, the

7Here we effectively approximate a smooth surface normals for the set of points projecting to the same image pixel
are identical.



size of S is the number of such cells on S2. It is then a simple inductive argument, using the fact
that two great circles intersect at two different points, to show that the number of cells Si can not
exceed m(m− 1) + 2. Furthermore, the cone’s generators are given by the images produced by light
sources at the intersection to two great circles. This then immediately implies that the number of
generators of C is quadratic in the number of distinct surface normal m.

With U understood, we can now construct the set C of all possible images of a convex Lambertian
surface created by varying the direction and strength of an arbitrary number of point light sources
at infinity,

C = {I|I =
k∑

i=1

max(Bsi, 0),∀si ∈ R3,∀k ∈ Z+},

where Z+ is the set of positive integers. The above discussion on U then immediately shows that C
is a polyhedral cone.

Some Properties of an Illumination Cone

Since the illumination cone C is completely determined by the illumination subspace L, C can be
determined uniquely if the surface normals scaled by albedo B were known. The method from
photometric stereo ([36]) allows us to recover B up to an invertible 3 × 3 linear transformation
A ∈ GL(3)

Bs = (BA)(A−1s) = B∗s∗

by using as few as three images since L is a 3-D subspace. Although B is not uniquely determined,
nevertheless, it is easy to see that B and B∗ determine the same illumination subspace, and hence,
the same illumination cone.

Another interesting result proved in [4] is that the actual dimension of C is equal to the number
of distinct surface normals. For images with n pixels, this indicates that the dimension of the
illumination cone is one for a planar object, is roughly

√
n for a cylindrical object, and is n for a

spherical object. It is to be noted, however, that having a cone span n dimensions does not mean that
it covers Rn. It is conceivable that an illumination cone could completely cover the positive orthant
of Rn. However, the existence of an object geometry that would produce this is unlikely, since for
such an object, it must be possible to choose n light source directions such that each of the n facets
(pixels) are illuminated independently. On the other hand, a cone that covers the entire positive
orthant can not be approximated by a low-dimensional linear subspace, and this would contradict
our analysis in the previous section using spherical harmonics. In particular, the result from the
previous section indicates that the shape of the cone is “flat” with most of its volume concentrated
near a low dimensional subspace. From a face recognition viewpoint, this is encouraging because it
indicates the possibility that the illumination cones for different objects are small (compared with
the ambient space Rn) and well separated. Recognition using illumination cone should then be
possible, even under extreme lighting conditions.

To compute an illumination cone, we need to obtain the illumination basis (generators of the
illumination cone) first. However, these basis images all belong to the boundary of the illumination
cone and therefore, compared to images in the interior, these boundary images are closer to images
in other illumination cones (from other individuals). From face recognition viewpoint, they are
the difficult images to recognize correctly. Conversely, images in cone’s interior are relatively easy
provided that different illumination cones do not have serious intersections. They typically include
images taken under diffused ambient lighting conditions and with little or no shadows on them. [22]
contains some preliminary experiment results supporting this observation. Combining these two
observations, we have an explanation for the obvious fact that images with shadows are harder to
recognize than those without.

Illumination Bases Are Not Equal

While the illumination cone provides a satisfying characterization of C, its computation is, in prin-
ciple, not feasible for most objects. This is because the number of basis images (generators) for



Figure 6: Great Circles corresponding to individual pixels divide the sphere into cells of different
shadowing configurations. The arrows indicate the hemisphere of light directions for which the
particular pixel is illuminated. The generators (extreme rays) of the cone are given by the images
produced by light sources at the intersection of two circles.

an illumination cone is quadratic in the number of distinct surface normals, and for many objects,
this number is on the same order as the number of pixels. Both time and space requirements for
enumerating all generators can be formidable. For instance, for a typical 200× 200 image, there are
roughly 1.6 billion generators. Each generator is stored as a 200× 200 image, and hence it requires
at least 64000 giga-bytes to store all generators. A formidable requirement for just one illumination
cone indeed. However, from a face recognition viewpoint, knowing the entire cone is not really
necessary. An illumination cone can contain images with unusual appearances taken under some
uncommon illumination conditions, such as images with only a few bright pixels. These images are
clearly of no significance since they do not contain sufficient information to enable any reasonable
recognition result. Instead, what we would like to know is the part of the illumination cone that
contains images under common lighting conditions, such as under smooth, ambient illumination.

This idea can be made more precise as follows. While the harmonic subspace H is a nine-
dimensional subspace approximating the illumination cone C, we would like to find a subspace R
(of the same or different dimension), with a basis formed by the generators of C, such that R
also approximates C well. The benefit of replacing H with R is that a basis of R now consists of
real images taken under real lighting conditions. Taking these images as training images, a linear
subspace can be immediately computed without recourse to estimating surface normals and albedos
and without rendering images.

The discussion above can be formulated as a computational problem [21]. Let ID be a collection
of lighting conditions, and we want to determine a subset {s1, · · · , sn} of ID such that images
{Is1 , · · · , Isn} taken under {s1, · · · , sn} span a subspace R that approximates C well. ID can be, for
instance, the set of generators of an illumination cone, or a set of points sampled on S2. An algorithm
for computing the subset {s1, · · · , sn} is presented in [21][22]. One possible way to solve the problem
is to enumerate all possible subspaces “generated” by points in ID and compute how good of a fit it
has to the original cone. However, in practice, it is not possible to do so, therefore, [21][22] choose a
different solution. Instead, a nested sequence of linear subspaces, R0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R,
with Ri an i-dimensional subspace and i ≥ 0, is computed. The idea is to make sure that all
subspaces are as close to the harmonic subspace as possible. Since H approximates C and if Ri

is close to H, then it should also approximate C well. In [21][22], the nested sequence of linear
subspaces is computed iteratively by finding s ∈ ID at each iteration that satisfies:

si = arg max
s∈IDi−1

dist(s,Ri−1)
dist(s,H)

. (21)

dist is the usual L2-distance between a subspace and a vector. Notice that here we are using the
same notation to denote the lighting condition in ID as well as the corresponding images. IDi−1

denotes the set obtained by deleting i elements from ID. The next subspace Ri in the sequence is
the subspace spanned by Ri−1 and si.

To actually solve the optimization problem above, we have to know the images under lighting
conditions in ID. Assuming human faces are Lambertian, this can be accomplished as before by
rendering images under novel lighting conditions s ∈ ID if surface normals and albedos are known.
In [21], a collection of 1005 sampled points on S2 is used to define the domain ID for the optimization
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Figure 7: Experiment results for selecting basis images. Top Row: Five of the ten faces in the Yale
database used in the experiment. Bottom Row: The nine lighting directions found by maximizing
Equation 21 for the five faces above. The directions are represented in spherical coordinates (φ, θ)
centered at the face. See [21]

problem posed in Equation 21. They worked with the well-known Yale Face database, which contains
faces images as well as 3D models (surface normals and albedos) for ten individuals.

For the five faces shown in Figure 7, the results of computing the 9-dimensional linear subspace
R are shown beneath their respective images. Since all lights are sampled from S2, we use spherical
coordinates to denote the light positions. The coordinates frame used in the computation is defined
such that the center of the face is located at the origin, and the nose is facing toward the positive z-
axis. The x and y axes are parallel to the horizontal and vertical axes of the image plane, respectively.
The spherical coordinates are expressed as the pair (φ, θ) (in degrees), where φ is the elevation angle
(angle between the polar axis and the z-axis) with range 0 ≤ φ ≤ 180, and θ is the azimuth angle
with range −180 ≤ θ ≤ 180. It is worthwhile to note that the set of nine lighting directions chosen
by the algorithm has a particular type of configuration. First, the first two directions chosen are
frontal directions (with small values of φ). The first direction chosen, by definition, is always the
image that is closest to H and in most cases, it is the direct frontal light given by φ = 0. Second,
after the frontal images are chosen, the next five directions are from the sides (with φ ≈ 90 ). By
examining the θ values of these directions, we see that these directions spread in a quasi-uniformly
manner around the lateral rim. And finally, the last chosen direction seems to be random. It is
important to note that it is by no mean clear a priori that our algorithm based on maximizing
Equation 21 will favor such type of configurations. Furthermore and most importantly, the resulting
configurations across all individuals are very similar.

This similarity strongly suggests that we can extrapolate the results here for all individuals. That
is, there may exists a configuration of nine (or fewer) lighting directions such that the subspace
spanned by images taken under these lighting conditions approximates C. As we will discuss in
the following section, the face recognition algorithm proposed in [21][22] is simply an algorithm for
computing one such configuration of lighting directions. For face recognition, this configuration is
particularly beneficial because it tells us the kind of training images (and the lighting conditions
under which to gather them) that are needed.

0.4 Menagerie
In this section, we discuss several recently-published algorithms [2][8][12][21][31][37] for face recog-

nition under varying illumination. These are all image-based methods, and except [8], the common
feature among them is the ability to produce a low-dimensional linear representation that models the
illumination effect using only a handful of training images. The justification for such generalization
is provided by the discussions in the previous sections.

The six algorithms proposed in [2][8][21][12][31][37] can roughly be categorized into two types,
algorithms that explicitly estimate surface normals as well as albedos [2][12][31][37]and algorithms



that do not [8][21]. Knowing surface normals allows one to recover the 3D structure by integration
and therefore, it is possible to simulate images of a human face under different illumination condi-
tions. In particular, 3D information allows the modelling of cast shadows by using, for example, ray
tracing [12]. The dimensionality of the datum (images) can be reduced, for example, using Principal
Component Analysis ([31]). On the reduced space, various different classifiers (such as Support Vec-
tor Machine and Nearest Neighbors Classifier) can be brought to bear on these simulated images.
The method of harmonic subspaces [2][37] provides one way of utilizing surface normals without
explicitly computing the 3D structure. Since the basis images are simply polynomials of the surface
normals and albedos, they can be easily computed if the normals and albedos are known. Obviously,
a technical part of these algorithms is the recovery surface normals and albedos using a few training
images. This can be accomplished either using photometric stereo techniques [12] or employing
probabilistic methods using some learned prior distributions of normals and albedos [31][37].

Papers [8] and [21] offer algorithms that do not require normal and albedo information. [8]
proposes an algorithm based on their joint probability density distribution (Equation 6). The joint
pdf is obtained empirically, and recognition is by calculating maximum likelihood using this pdf.
[21] is perhaps the simplest algorithm. The paper shows that a set of training images (as few as five)
taken under prescribed lighting conditions is sufficient to yield good recognition results. The key
here is to obtain a configuration of lighting conditions such that the (training) images taken under
these lighting conditions form a basis of a linear subspace that approximates the illumination cone
well.

Georghiades et. al. [12] In this algorithm, surface normals and albedos of the face are
recovered using photometric stereo techniques [5][36], and the 3D shape of the face is obtained
by integrating the normal vector fields. Once the normals and albedos are known, it is possible
to simulate images under new lighting conditions by applying Equation 1 directly. However, to
account for the cast shadows, a simple ray tracer is employed to render images with cast shadows.
In both cases, the simulated images are all under distant point sources, and they can be interpreted
as the generators of the illumination cone, and the process of simulating images can be considered
as sampling generators. After sufficiently many images have been sampled, there are two ways to
produce appearance models. One can apply Principal Component Analysis (PCA) to produce a low-
dimensional linear representation, or one can use the cone generated by the sampled images directly.
The difference between subspace and cone models is how the projection of each query image x is
computed: in both cases, the projection is defined by minimizing the reconstruction error:

min ‖x− (a1e1 + · · · , ases)‖2.

In the subspace model, ei’s are the basis vectors, and the coefficients ai’s are real numbers. In the
cone case, ei’s are the generators, and the coefficients are subjected to the non-negativity constraint,
ai ≥ 0. Because of this constraint, determining ai’s becomes a convex programming problem, which,
fortunately, can be solved efficiently.

Next, we mention briefly how 3D reconstruction is accomplished in this paper. Using photometric
stereo [36], the problem is the following: given a collection of training images {I1, · · · , Ik}, we want
to find matrices B and S that minimize the “reconstruction error”:

min
B,S

‖X −BS‖2 (22)

where X = [I1, · · · , Ik] is the intensity matrix of k images (in vector form) and S is a 3× k matrix
whose columns si are the light source directions scaled by their intensities for all k images. B is a
n×3 matrix whose rows are the normal vectors. Given X, B and S can be estimated using Singular
Value Decomposition (SVD) [14]. However, there are three complications. First, a straightforward
application of SVD is not robust since minimizing Equation 22 at shadowed pixels (both attached and
cast shadows) is incorrect. The solution is to consider entries of X corresponding to shadowed pixels
as missing values, and SVD with missing values ([17][29]) is used instead of regular SVD. The second
complication arises from the fact the the normal vector field B estimated by SVD is in generally
not integrable, i.e., it is not the normal vector field of a smooth surface. However, it is possible to
efficiently compute an integrable normal vector field that has minimal L2-distance to B using the



Figure 8: 3D reconstruction of a human face. Top: The seven training images. Bottom, Left:
Reconstruction Results. Left: The surface is rendered with flat shading (constant albedo). Right:
rendered using estimated albedos. Bottom, Right: Three synthesized images with new lighting
conditions. Note the large variations in shading and shadowing as compared to the seven training
images above.

Discrete Cosine Transform [10]. The overall strategy to minimize Equation 22 is to minimize B and
S separately and iteratively: each time B has been estimated, we find an integral normal vector
field that is closest to B in the L2-sense, and then S is estimated using this integrable field. The
third complication arises from the fact that the pair B,S estimated from the factorization X = BS
is not unique. In fact, for any non-singular 3× 3 matrix G, the product of BG and G−1S is also X.
Integrability of BG and B requires that G belongs to a three-dimensional subgroup of GL(3), the
Generalized Bas-Relief transformations (a GBR transformation scales the surface and introduces an
additive plane) [5]. Therefore, the reconstruction of the surface geometry outlined above is only up
to some (unknown) GBR transformation. In [12], symmetries and similarities in faces are exploited
to resolve this ambiguity. Some reconstruction results in this paper are shown in Figure 8. A related
and more sophisticated reconstruction algorithm using non-Lambertian reflectance functions have
been proposed recently [11].

The method proposed in [12] is a generative algorithm in that images under new illumination
and pose conditions can be simulated. The single-pose recognition algorithm we just discussed can
be generalized immediately to multiple poses by associating different poses with different illumina-
tion cones. Each query image is then tested against all these illumination cones to determine the
recognition result.

Basri & Jacobs [2] The face recognition algorithm proposed by the authors is a straightforward
application of their illumination model based on spherical harmonics. Similar to the preceding
algorithm, it is also a subspace-based algorithm in that the appearance model for each individual in
the database is a nine-dimensional linear subspace spanned by the nine harmonic images. Assuming
Lambertian reflectance, this subspace will capture more than 99% of the variance in pixel intensities.
Since a harmonic image is simply a product of albedos and a polynomial (with degree less than three)
in the components of the normal vectors, the nine basis images can be immediately obtained once
the normals and albedos are known. The analytic description of the subspace is the strength of this
algorithm, and it enables us to compute the subspace without simulating any images.

Let B = [b1, · · · , b9] be the matrix whose columns are harmonic images (of an individual). The
face recognition algorithm is based on computing the L2 reconstruction error, and for a query image
x, it is given by

min
a
‖Ba− x‖2, (23)

where a can be any 9× 1 vector. Experiment results reported in [2] have shown that the recognition
algorithm based on this minimal L2 reconstruction error has good performance. However, without
any constraint on a, it is possible that the illumination condition implied by a is not physically



realizable, i.e. the function l = a1Y1 + · · · + a9Y9 has negative values somewhere on S2. The
constrained version of Equation 23 in this context is slightly harder to formulate. We start with a
lighting configuration given by a collection of J point lights represented by the delta function δθjφj ,

l =
J∑

j=1

ajδθjφj
=

J∑
j=1

aj

∞∑
n=0

n∑
m=−n

Ynm(θj , φj)Ynm.

As before, any physically realizable lighting conditions can be approximated to an arbitrary precision
using sufficiently large J and appropriate delta functions. The point, of course, is that ai in the above
equation are all non-negative, and we can rewrite equations Equation 23 above using l. Specifically,
we need a matrix H that relates the delta functions δθiφj

and the spherical harmonics. Let H be a
matrix that contains a sampling of the harmonic functions, with its rows contain the transforms of
the delta functions. Equation 23 can be re-written as

min
a
‖BHta− x‖ s.t. a ≥ 0.

This gives the constrained version of the linear problem, and it guarantees that the resulting lighting
configuration is physically realizable. However, the experimental results reported in [2] do not
indicate any visible difference between the performances of the two slightly different algorithms
above.

Surface normals and albedos are unexpendable components in the previous two algorithms, and
photometric stereo is a commonly used technique for estimating normals and albedos. However,
photometric stereo generally requires more than three images (under different lighting conditions)
in order to unambiguously estimate the surface normals at every pixel. What is needed is an
algorithm that estimates the normals and albedos from as few training images as possible, and Sim
and Kanade’s algorithm below does that for just one image.

The non-existence of illumination invariant discussed previously has shown that it is impossible
to recover the normals and albedos from one image directly. However, as we pointed out earlier, the
results presented in Section 2 were derived without any assumption on the geometry and reflectance
of the object. It is possible, however, to estimate the normals and albedos reasonably accurately
if some useful prior has been given, and this is precisely what the following two algorithms strive
to accomplish: given one image of an individual and some learned priors, normals and albedos are
estimated based on some maximal likelihood estimates.

Sim & Kanade [31] In this method, the illumination model is the usual Lambertian model
augmented with an exterm term e:

i(x) = n(x)ts + e(x, s). (24)

Here, as before, the i(x) stands for the intensity at pixel x, n(x) the albedo-scaled normal and s is the
direction of some single distance lighting. The extra e term models the effecive ambient illumination
and it depends both on x and s. With aligned images, it is assumed that the normals of human
faces at pixel x forms a Gaussian distribution with some mean µn(x) and covariance matrix Cn(x).
Similarly, e(x, s) is also assumed to form a Gaussian distribution, with mean µe(x, s) and variance
σ2

e(x, s). All these parameters can be estimated from a collection of images with known normals and
lighting directions. In addition, normals at different pixels are assumed to be independent, and this
assumption makes the following MAP procedure much simpler.

Once the distributions for n(x) and e(x, s) have been obtained, we can estimate the normals at
each pixel of a given image using Equation 24. Specifically, for an given image, we first estimate the
unknown illumination s ([38][39]). This allows µe(x, s) and σ2

e(x, s) to be computed. n(x) can be
recovered as a maximum a posteriori (MAP) estimate, nMAP(x) = arg maxn(x) Pr(n(x)|i(x)), where
i(x) is given by Equation 24. Simulated images under new illumination can be rendered using the
estimated normals and ambient illumination term e. See Figure 9. Face recognition proceeds exactly
as before: for each individual in the database with one training image, we first estimate the normals
and the error term e. Images under novel illumination conditions are then simulated, and a linear
subspace is computed by applying PCA to the simulated images.



Figure 9: Hallucinated Images (Courtesy of [31]). Left: Image rendered using strict Lambertian
equation (without e in Equation 24) and one that uses the error term e, where the specular reflection
on the left cheek is more accurately rendered. Right: Four synthetic images using estimated normals
n(x) and e(x, s) (top row) and actual images under the same illumination (bottom row).

Zhang & Samaras [37] Note that using the estimated normals above, we might as well compute
the nine-dimensional harmonic subspaces using the normals, and therefore, avoid simulating images.
In fact, we can do better by directly estimating the nine harmonic images from just one training
image, and an algorithm for doing this appeared in [37]. The starting point is an equation that is
similar to Equation 24:

i(x) = b(x)tα + e(x, α) (25)

the new b(x) is a 9× 1 vector that encodes the pixel values of the nine harmonic images at x and e
models the ambient illumination as before. In place of s, we have a 9 × 1 vector α that represents
the nine coefficients in the truncated spherical harmonics expansion of s. We can assume that b(x)
form a Gaussian distribution at each pixel x, with some mean µb(x) and covariance matrix Cb(x).
As before, these parameters can be estimated from a collection of training (harmonic) images. Once
they have been computed, for any given image, we can estimate b(x) at each pixel.

Chen et. al. [8] Unlike the previous algorithms, this algorithm does not estimate surface normals
and albedos, and it requires only one single training image. It is essentially probabilistic, similar
to Zhang & Samaras and Sim & Kanade, in the sense that the algorithm depends critically
on a prior distribution. In this case, the distribution is on the angles between image gradients, and
it is obtained empirically, instead of analytically. As we discussed in Section 2, the joint density
distribution ρ for two image gradients can be used as an illumination insensitive measure. If we
treat each pixel independently, the joint probability of observing the images gradients, ∇I,∇J , of
two images I and J of the same object is

P (∇I,∇J) =
∏

i∈Pixels

ρ(∇Ii,∇Ji) =
∏

i∈Pixels

ρ(r1(i), φ(i), r2(i)), (26)

where r1(i) = |∇I(i)|, r2(i) = |∇J(i)|, and φ is the angle between the two gradient vectors. With this
probability value, it is then quite straightforward to come up a face recognition algorithm. Given a
query image I, we compute P (∇I,∇J) for every training image J using the empirically determined
probability distribution ρ. The one training image having the largest P value is considered to be the
likeliest to have come from the same face as the query image I. Therefore, no subspace is involved
for this algorithm, and the computation is exceptionally fast and efficient. The obvious drawback
is that we need to know how to evaluate (at least empirically) the joint density function ρ, and
determining ρ accurately may require great efforts.

Lee et. al. [22] Implementation-wise, this is perhaps the simplest algorithm. In this algorithm,
surface normals and albedos are not needed and there is no need to simulate images under novel
lighting conditions. The main insight here is to obtain certain configuration of lighting positions
such that images taken under these lighting positions can serve as basis vectors for the subspace.
This particular configuration, named the “universal configuration” in [21], can be computed for a
small number of models (faces) and it can be applied to all faces.

Suppose l face models are available with sufficient information (normals and albedos) that we can
simulate these faces under any new lighting condition. Given a set of sampled directions ID ⊂ S2,
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Figure 10: Left: The universal configuration of nine light source directions with all 200 sample
points plots on a hemisphere. Spherical coordinates (φ, θ) (in degrees) are used here, and the nine
directions in spherical coordinates are { (0, 0), (68,−90), (74, 108), (80, 52), (85,−42), (85,−137),
(85, 146), (85,−4), (51, 67)}. Right: Nine images of a person illuminated by lights from the universal
configuration.

we seek a fixed configuration of nine lighting directions for all l faces such that for each face, on
average, the linear space spanned by the images taken under these lighting conditions is a good
linear approximation to the illumination cone. To find such a configuration, [21] tries to obtain a
nested sequence of linear subspaces, R0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R, by iteratively maximizing
the average of the quotient in Equation 21 over all the available faces:

xi = arg max
x∈IDi−1

l∑
k=1

dist(xk, Rk
i−1)

dist(xk,Hk)
. (27)

Since we are computing Equation 21 for all the available face models (indexed by k) simultaneously,
for each x ∈ IDi−1, xk denotes the image of model k taken under a single light source with direction
x. IDi−1 denotes the set obtained by deleting i elements from Ω. With k indexing the available
face models, Hk denotes the harmonic subspace of model k, and Rk

i−1 represents the linear subspace
spanned by the images {xk

1 , · · · , xk
i } of model k under light source directions {x1, · · · , xi}. [21] com-

putes a R using a set of 200 uniformly sampled points on the “frontal hemisphere” (the hemisphere
in front of the face). The resulting configuration as well as the 200 samples on the hemisphere are
plotted in Figure 10.

0.5 Experiments and Results
In this section, we discuss the performances of the face recognition algorithms summarized in the

previous section. With one exception ([8]), all algorithms are subspace-based algorithms. Since they
are all image-based algorithms, low level imaging processing such as edge and feature detections are
unnecessary. Experiment results reported below will demonstrate that these recognition algorithms
are quite robust against illumination variation. In addition, because L2-differences can be quickly
computed using a small number of matrix operations, they are efficient and easy to implement as
well. However, the algorithms differ from each other in two fundamental ways: by the number of
training images they require and by ways the subspaces are computed from the training images.

The algorithms are tested below using two face databases, Yale Face Database B and the PIE
(Pose, Illumination and Expression) database from CMU. In the past few years, they have become
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Figure 11: Example images of a single individual in frontal pose from the Yale Face Database B
showing the variability due to illumination. The images have been divided into four subsets according
to the angle the light source direction makes with the camera axis – Subset 1 (up to 12◦), Subset 2
(up to 25◦), Subset 3 (up to 50◦), Subset 4 (up to 77◦).



the de facto standards for researchers working on illumination effect and face recognition. Both
databases contain many images of different individuals taken under various illumination and viewing
(pose) conditions. In the case of CMU PIE database, expression variation is also included. For the
experiments below, only the illumination part of the databases will be used. The PIE database
(see [30] for more information) contains 1587 images of 69 individuals and 23 different illumination
conditions. The original (older) Yale database contains 10 individuals and each individual has 45
different illumination conditions (a sample of Yale database is shown in Figure 11 and see [12] for
more details). Later, the number of individual has increased to 38 in the the extended Yale database.
The images in the Yale database are grouped into four subsets according to the lighting angle with
respect to the camera axis. The first two subsets cover the angular range 0◦ to 25◦, the third subset
covers 25◦ to 50◦, and the fourth subset covers 50◦ to 77◦. As the lighting direction moves from the
frontal to the lateral positions, shadows, both attached and cast shadows, develop prominently in
the resulting images. These heavily-shadowed images (subset four) are the most challenging for face
recognition.

0.5.1 Results
Table 1 summarizes the experiment results for all the algorithms (except Sim & Kanade)

discussed in the previous section. The original Yale face database (10 individuals, 450 images) is
used in this experiment. The first five rows contain the results of using “quick-fix” algorithms without
significant illumination modelling. The next eight rows display the results of using more sophisticated
illumination modelling. The difference in performances between these two categories of algorithms
is apparent: while the total error rates for the former category hover above 20%, algorithms in the
later category can achieve less than 1% in error rates. Note that different algorithms require different
numbers of training images and in evaluating algorithm performances, we have tried to use the same
number of training images whenever possible.

Before going further, we briefly describe these six “quick-fix” algorithms [12]. Correlation is a
nearest-neighbor classifier in the image space [6] in which all of the images are normalized to have
zero mean and unit variance. In this experiment, we take several frontally-illuminated images as
training images and calculate the correlations between these normalized training images and each
(normalized) query image. “9NN” is a straightforward implementation of the nearest neighbor
classifier using nine training images for each individual. The nine training images are images taken
under the lighting conditions specified in the universal lighting configuration discussed in the previous
section. Therefore, unlike Correlation, the nine training images contain both frontally and laterally
illuminated images. Eigenfaces uses PCA to obtain a subspace from training images. One proposed
method for handling illumination variation using PCA is to discard the first three most significant
principal components, which, in practice, yields better recognition algorithm [3]. The linear subspace
method is a simple subspace-based method. The subspace is a three-dimensional subspace built
on the x, y, z components of the surface normals. This is a variant of the photometric alignment
method proposed in [28] and is related to [16][24]. While this method models the variation in shading
when the surface is completely illuminated, it does not model shadowing, neither attached nor cast
shadows.

In Table 1, there are two slightly different versions of the harmonic subspace method [2] and the
illumination cone method [12]. In “Harmonic Subspace-attached”, the nine harmonic images that
form the basis of the linear subspace are rendered directly according to the formulas in Equations 12-
14. “Harmonic Subspace-cast” uses a simple ray tracer to simulate the harmonic images of a 3D face
under harmonic lightings. Similarly, in “Cone-attached” and “Cone-cast” methods, we use images
without and with cast shadows to compute the illumination cones, respectively. Harmonic exemplars
is the method proposed in [37] and the result here is taken directly from that paper. “Gradient
Angle” comes from [8] and finally, “9PL” is the algorithm first proposed in [21] that uses nine
training images taken under the nine lighting conditions specified by their universal configuration.
In this experiment, the 3D structure of the face is used to render the nine images under these nine
lighting conditions (which are not included in the Yale Database).

There are several ways to understand the results in Table 1. First, images taken under frontal
illuminations are generally easier to recognized. As expected, the laterally-illuminated images (those
from Subsets 3 and 4) are the main challenges. As the first five “quick-fix” algorithms clearly



Table 1: The error rates for various recognition methods on subsets of the Yale Face Database B.
Some of the Each entry is taken directly from a published source indicated by citation.

Comparison of Recognition Methods

Method Number of Estimate
Error Rate (%) vs. Illum.

Training Normals Subset Subset Subset Total
Images 1&2 3 4

Correlation [12] 6-7 No 0.0 23.3 73.6 29.1
Eigenfaces [12] 6-7 No 0.0 25.8 75.7 30.4

Eigenfaces 6-7 No 0.0 19.2 66.4 25.8
w/o 1st 3 [12]

9NN [22] 9 No 13.8 54.6 7.0 22.6
Linear subspace [12] 6-7 Yes 0.0 0.0 15.0 4.6
Cones-attached [12] 6-7 Yes 0.0 0.0 8.6 2.7

Harmonic Exemplars [37] 1 Yes 0.0 0.3 3.1 1.0
9PL (simulated images)[22] 9 No 0.0 0.0 2.8 0.87

Harmonic Subspace-attached (no cast shadow)[22] 6-7 Yes 0.0 0.0 3.571 1.1
Harmonic Subspace-cast (with cast shadows)[22] 6-7 Yes 0.0 0.0 2.7 0.85

Gradient Angle [8] 1 No 0.0 0.0 1.4 0.44
Cones-cast [12] 6-7 Yes 0.0 0.0 0.0 0.0

5PL (real images)[22] 5 No 0.0 0.0 0.0 0.0
9PL (real images)[22] 9 No 0.0 0.0 0.0 0.0

demonstrated, it is difficult to robustly recognize these images without any significant illumination
modelling. Second, linear subspace models are indeed the right tool to use for modelling illumination.
This, of course, is the main result we discussed in Section 3 and here we observe it empirically by
comparing the recognition results using “9PL” and “9NN”. While they use the same training images
and compute the same norm (L2 norm), the ability of the subspace to correctly extrapolate images
under novel illumination conditions is the only explanation for the discrepancy in performances
between “9PL” and “9NN”. Finally, we see that the difference in performance between “Harmonic
images-attached” and “Harmonic images-cast” (and likewise for “Cone-attached” and “Cone-cast”)
are not significant. This implies, as we mentioned in the introduction, that the degree of non-
convexity of human faces is not too severe as to render the effect of cast shadows on human faces
unmanageable.

While the on-line recognition processes for algorithms listed in Table 1 are pretty much the same,
they differ significantly, however, in their off-line training processes. For algorithms that required
surface normals, at least three training images are needed in order to determine the normals and
albedos. In this experiment, we require typically six frontally-illuminated images to estimate the
surface normals and albedos using photometric stereo techniques. Although “Harmonic Exemplar”
can get by with just one training image, it requires the priors on harmonic images that can only be
obtained using an off-line training process that typically requires a large number of training images.
Same goes for “Gradient Angle” in which a prior on the angles between image gradients has to be
estimated empirically. Perhaps, the simplest algorithm among the bunch, both implementation-wise
and conceptually, is “9PL”. Since there is practically no training involved here, the work is almost
minimal: we simply need to obtain images of a person taken under nine specified lighting conditions.
Further experiments have also shown that a five-dimensional subspace (“5PL”) is already sufficient
for robust face recognition. While “9PL” is sufficient for single-view (frontal view) face recognition,
without 3D reconstructions, it can not deal with multi-view face recognition such as Georghiades
et. al..

Experiments have also been carried out using CMU PIE database. In [22], it has been demon-



strated that using only a five-dimensional subspace for each individual , i.e. five training images per
person, the overall recognition error rate of 3.5% can be achieved for the CMU PIE dataset using the
algorithm of Lee et.al.. In [31], Sim and Kanade have compared the performance of two different
algorithms, between the nearest neighbor (NN) classifier, and the classifier based on individual PCA
subspaces using their algorithm (as discussed in the previous section). The result reported for NN
has recognition error rate of 61% while it is just 5% for the proposed method in [31]. The dimensions
of the PCA subspace used in their experiment range from 35 to 45.

0.5.2 Further Dimensionality Reduction
Although subspace-based algorithms have done well in the preceding experiment, they all have

used subspaces with dimension greater than or equal to nine. While the numerological fixation on
nine has its origin (or justification) in spherical harmonics, it is desirable to have subspaces with
still smaller dimension without suffering from significant degradation in recognition performance.

Further dimensionality reduction is particularly straightforward for Lee et. el. [22]. Here, the
subspace is determined through a nested sequence of linear subspaces with increasing dimension:
R0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R with Ri, an i-dimensional subspace and i ≥ 0. All these
subspaces Ri can be used for recognition, and surprisingly, the experiments reported in [22] have
demonstrated that the five-dimensional subspace R5 is already sufficient for face recognition under
large illumination variation. Figure 12(left) shows that the recognition error rate is negligible when
Ri, i ≥ 5, is used as the subspace. Specifically, they have tested their algorithm (with R5 as the
subspace) on the extended Yale face database (1410 images of 38 individuals). Using real images
as training images this time, they have reported an error rate of 0.2%. Considering the lighting
distribution specified by R5 (the first five directions in the universal configuration), this result
corroborates well with our discussion in Section 3.1, where the empirical observation was that using
5± 2 eigenimages is sufficient to provide a good representation of the images of a human face under
variable lighting.

Under spherical harmonics framework, dimension reduction is less straightforward. For example,
to define a seven-dimensional subspace R7, presumably, we can find a basis for R7 using some linear
combinations of the nine harmonic images. [25] has proposed a method of determining such linear
combinations. However, the simplest way is to use the first four spherical harmonics (i.e. ignoring
spherical harmonics with degrees greater than one). By themselves, these four spherical harmonics
have accounted for at least 83% of the reflected energy, and the four corresponding harmonic images
encode already the albedos and surface normals. Figure 12(right) displays the Receiver Operating
Characteristic (ROC) curves for 9D harmonic subspace method, and 9D and 4D harmonic subspace
methods with non-negative light conditions [2]. The experiment in [2] uses a database of faces
collected at NEC, Japan, which contains 42 faces with seven different poses and six different lighting.
The ROC curves show the fraction of query images for which the correct model (person) is classified
among the top k closest models (persons) as k varies from 1 to 40. As expected, the 4D positive
lighting method performs less well than the other two methods employing the full 9D subspace.
However, it is much faster, and seem to be quite effective under simpler pose and lighting conditions
[2].

0.6 Conclusion
Looking back at images in Figure 1 in the introduction, we now have, at our disposal, a number

of face recognition algorithms that can comfortably handle these formidable-looking images. Barely
more than a decade ago, these images would have been problematic for face recognition algorithms
at the time. The new concepts and insights introduced in studying illumination modelling in the
past decade has bore many fruits in the form of face recognition algorithms that are robust against
illumination variation. In many ways, we are very fortunate because human faces do not have
more complicated geometry and reflectance. Coupled with the superposition nature of illumination,
they allow us to utilize low-dimensional linear appearance models to capture large portion of image
variation due to illumination. The linearity makes the algorithms efficient and easy to implement,
and the appearance models make the algorithms robust.

While great strides have been made, many problems are still awaiting our formulations and
solutions. From the face recognition perspective, there is the important problem of alignment and
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Figure 12: Further Dimensionality Reduction. Left: (Courtesy of [22]) The error rates for face
recognition using successively smaller linear subspaces Ri. The abscissa represents the dimension of
the linear subspace while the ordinate gives the error rate. Right: (Courtesy of [2]) ROC curve
for using nine-dimensional and four-dimensional harmonic subspaces.

registration, which has been completely ignored in our discussion. How to make these processes
robust under illumination variation is a difficult problem and a solution to this problem would
have significant impacts on other related research areas such as video face recognition. Because
face tracking is an integral and indispensable part of video face recognition, it is also a challenging
problem to develop a tracker that is robust against illumination variation. Other important and
interesting problems include photo-realistic simulation of human faces as well as face recognition
using lighting priors.





Bibliography

[1] V. Arnold. Ordinary Differential Geometry. MIT press, 1973.

[2] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(6):383–390, 2003.

[3] P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):711–720, 1997.

[4] P. Belhumeur and D. Kriegman. What is the set of images of an object under all possible
lighting conditions. Int. J. Computer Vision, 28:245–260, 1998.

[5] P. Belhumeur, D. Kriegman, and A. Yuille. The bas-relief ambiguity. Int. J. Computer Vision,
35(1):33–44, 1999.

[6] R. Brunelli and T. Poggio. Face recognition: Features vs. templates. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(10):1042–1053, 1993.

[7] R. Chellappa, C. Wilson, and S. Sirohey. Human and machine recognition of faces : A survey.
Proc. IEEE, 83(5):705–740, 1995.

[8] H. Chen, P. Belhumeur, and D. Jacobs. In search of illumination invariants. In Proc. IEEE
Conf. on Comp. Vision and Patt. Recog., pages 1–8, 2000.

[9] R. Epstein, P. Hallinan, and A. Yuille. 5+/-2 eigenimages suffice: An empirical investigation
of low-dimensional lighting models. In PBMCV, 1995.

[10] R. Frankot and R. Chellapa. A method for enforcing integrability in shape from shading
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451,
1988.

[11] A. Georghiades. Incorporating the torrance and sparrow model of reflectance in uncalibrated
photometric stereo. In Proc. Int. Conf. on Computer Vision, pages 816–825, 2003.

[12] A. Georghiades, D. Kriegman, and P. Belhumeur. From few to many: Generative models for
recognition under variable pose and illumination. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6):643–660, 2001.

[13] A. Goldstein, L. Harmon, and A. Lesk. Identification of human faces. Proc. IEEE, 59(5):748–
760, 1971.

[14] G. Golub and C. van Loan. Matrix Computation. The John Hopkins Univ. Press, 1989.

[15] P. Hallinan. A low-dimensional representation of human faces for arbitrary lighting conditions.
In Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pages 995–999, 1994.

[16] P. Hallinan. A deformable model for face recognition under arbitrary lighting conditions. Ph.D.
Thesis, Harvard Univ., 1995.

27



[17] D. Jacobs. Linear fitting with missing data: Applications to structure from motion and char-
acterizing intensity images. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog., 1997.

[18] T. Kanade. Ph.D Thesis. Kyoto Univ., 1973.

[19] D. Kriegman and P. Belheumer. What shadows reveal about object structure. Journal of the
Optical Society of America, pages 1804–1813, 2001.

[20] J. H. Lambert. Photometria sive de mensure de gratibus luminis, colorum umbrae. Eberhard
Klett, 1760.

[21] K. Lee, J. Ho, and D. Kriegman. Nine points of lights: Acquiring subspaces for face recognition
under variable lighting. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pages 519–526,
2001.

[22] K.-C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under
variable lighting. to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23] Y. Moses, Y. Adini, and S. Ullman. Face recognition: The problem of compensating for changes
in illumination direction,. In Proc. European Conf. on Computer Vision, pages 286–296, 1994.

[24] S. Nayar and H. Murase. Dimensionality of illumination in appearance matching. Proc. IEEE
Conf. on Robotics and Automation, 1996.

[25] R. Ramamoorthi. Analytic PCA construction for theoretical analysis of lighting variability in
images of a lambertian object. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24:1322–1333, 2002.

[26] R. Ramamoorthi and P. Hanrahan. An efficient representation for irradiance environment. In
Proceedings of SIGGRAPH, pages 497–500, 2001.

[27] R. Ramamoorthi and P. Hanrahan. A signal-processing framework for inverse rendering. In
Proceedings of SIGGRAPH, pages 117–228, 2001.

[28] A. Shashua. On photometric issues in 3D visual recognition form a single image. Int. J.
Computer Vision, 21:99–122, 1997.

[29] H. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with mising data and its
application to polyhedral object modeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(9):854–867, 1995.

[30] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination and expression (pie) database. In
Proc. IEEE Conf. on Auto. Fascial and Gesture Recog., pages 53–58, 2002.

[31] T. Sim and T. Kanade. Combining models and exemplars for face recognition: An illuminating
example. In Proceedings of Workshop on Models versus Exemplars in Computer Vision, 2001.

[32] L. Sirovitch and M. Kirby. Low-dimensional procedure for the characterization of human faces.
J. of Optimal Soc. Am. A, 2:519–524, 1987.

[33] W. Strauss. Partial Differential Equations. John Wiley & Sons, Inc, 1992.

[34] M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive Neuroscience, 3(1):71–96,
1991.

[35] S. Westin, J. Arvo, and K. Torrance. Predicting reflectance functions from complex surfaces.
In Proceedings of SIGGRAPH, pages 255–264, 1992.

[36] A. Yuille and D. Snow. Shape and albedo from multiple images using integrability. In Proc.
IEEE Conf. on Comp. Vision and Patt. Recog., pages 158–164, 1997.



[37] L. Zhang and D. Samaras. Face recognition under variable lighting using harmonic image
examplars. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog., volume 1, pages 19–25,
2003.

[38] R. Zhang, P. Tsai, J. Cryer, and M. Shah. Shape from shading: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 21(8):690–706, 1999.

[39] Q. Zheng and R. Chellappa. Estimation of illuminant direction, albedo and shape from shading.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):680–702, 1991.


