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Abstract

A fundamental problem in neural network research, as well asin many other disciplines, is finding a suitable
representation of multivariate data, i.e. random vectors.For reasons of computational and conceptual simplicity,
the representation is often sought as a linear transformation of the original data. In other words, each component
of the representation is a linear combination of the original variables. Well-known linear transformation methods
include principal component analysis, factor analysis, and projection pursuit. Independent component analysis
(ICA) is a recently developed method in which the goal is to find a linear representation of nongaussian data so
that the components are statistically independent, or as independent as possible. Such a representation seems to
capture the essential structure of the data in many applications, including feature extraction and signal separation.
In this paper, we present the basic theory and applications of ICA, and our recent work on the subject.

Keywords: Independent component analysis, projection pursuit, blind signal separation, source separation, factor
analysis, representation

1 Motivation

Imagine that you are in a room where two people are speaking simultaneously. You have two microphones, which
you hold in different locations. The microphones give you two recorded time signals, which we could denote by
x1(t) andx2(t), with x1 andx2 the amplitudes, andt the time index. Each of these recorded signals is a weighted
sum of the speech signals emitted by the two speakers, which we denote bys1(t) ands2(t). We could express this
as a linear equation:

x1(t) = a11s1 +a12s2 (1)

x2(t) = a21s1 +a22s2 (2)

wherea11,a12,a21, anda22 are some parameters that depend on the distances of the microphones from the speakers.
It would be very useful if you could now estimate the two original speech signalss1(t) ands2(t), using only the
recorded signalsx1(t) andx2(t). This is called thecocktail-party problem. For the time being, we omit any time
delays or other extra factors from our simplified mixing model.

As an illustration, consider the waveforms in Fig. 1 and Fig.2. These are, of course, not realistic speech signals,
but suffice for this illustration. The original speech signals could look something like those in Fig. 1 and the mixed
signals could look like those in Fig. 2. The problem is to recover the data in Fig. 1 using only the data in Fig. 2.

Actually, if we knew the parametersai j , we could solve the linear equation in (1) by classical methods. The
point is, however, that if you don’t know theai j , the problem is considerably more difficult.

One approach to solving this problem would be to use some information on the statistical properties of the
signalssi(t) to estimate theaii . Actually, and perhaps surprisingly, it turns out that it isenough to assume thats1(t)
ands2(t), at each time instantt, arestatistically independent. This is not an unrealistic assumption in many cases,
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and it need not be exactly true in practice. The recently developed technique of Independent Component Analysis,
or ICA, can be used to estimate theai j based on the information of their independence, which allows us to separate
the two original source signalss1(t) ands2(t) from their mixturesx1(t) andx2(t). Fig. 3 gives the two signals
estimated by the ICA method. As can be seen, these are very close to the original source signals (their signs are
reversed, but this has no significance.)

Independent component analysis was originally developed to deal with problems that are closely related to the
cocktail-party problem. Since the recent increase of interest in ICA, it has become clear that this principle has a
lot of other interesting applications as well.

Consider, for example, electrical recordings of brain activity as given by an electroencephalogram (EEG). The
EEG data consists of recordings of electrical potentials inmany different locations on the scalp. These potentials
are presumably generated by mixing some underlying components of brain activity. This situation is quite similar
to the cocktail-party problem: we would like to find the original components of brain activity, but we can only
observe mixtures of the components. ICA can reveal interesting information on brain activity by giving access to
its independent components.

Another, very different application of ICA is on feature extraction. A fundamental problem in digital signal
processing is to find suitable representations for image, audio or other kind of data for tasks like compression and
denoising. Data representations are often based on (discrete) linear transformations. Standard linear transforma-
tions widely used in image processing are the Fourier, Haar,cosine transforms etc. Each of them has its own
favorable properties (Gonzales and Wintz, 1987).

It would be most useful to estimate the linear transformation from the data itself, in which case the transform
could be ideally adapted to the kind of data that is being processed. Figure 4 shows the basis functions obtained by
ICA from patches of natural images. Each image window in the set of training images would be a superposition
of these windows so that the coefficient in the superpositionare independent. Feature extraction by ICA will be
explained in more detail later on.

All of the applications described above can actually be formulated in a unified mathematical framework, that
of ICA. This is a very general-purpose method of signal processing and data analysis.

In this review, we cover the definition and underlying principles of ICA in Sections 2 and 3. Then, starting
from Section 4, the ICA problem is solved on the basis of minimizing or maximizing certain conrast functions;
this transforms the ICA problem to a numerical optimizationproblem. Many contrast functions are given and
the relations between them are clarified. Section 5 covers a useful preprocessing that greatly helps solving the
ICA problem, and Section 6 reviews one of the most efficient practical learning rules for solving the problem, the
FastICA algorithm. Then, in Section 7, typical applications of ICA are covered: removing artefacts from brain
signal recordings, finding hidden factors in financial time series, and reducing noise in natural images. Section 8
concludes the text.

2 Independent Component Analysis

2.1 Definition of ICA

To rigorously define ICA (Jutten and Hérault, 1991; Comon, 1994), we can use a statistical “latent variables”
model. Assume that we observen linear mixturesx1, ...,xn of n independent components

x j = a j1s1 +a j2s2 + ...+a jnsn, for all j. (3)

We have now dropped the time indext; in the ICA model, we assume that each mixturex j as well as each
independent componentsk is a random variable, instead of a proper time signal. The observed valuesx j(t), e.g.,
the microphone signals in the cocktail party problem, are then a sample of this random variable. Without loss of
generality, we can assume that both the mixture variables and the independent components have zero mean: If this
is not true, then the observable variablesxi can always be centered by subtracting the sample mean, whichmakes
the model zero-mean.

It is convenient to use vector-matrix notation instead of the sums like in the previous equation. Let us denote by
x the random vector whose elements are the mixturesx1, ...,xn, and likewise bys the random vector with elements
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s1, ...,sn. Let us denote byA the matrix with elementsai j . Generally, bold lower case letters indicate vectors and
bold upper-case letters denote matrices. All vectors are understood as column vectors; thusxT , or the transpose of
x, is a row vector. Using this vector-matrix notation, the above mixing model is written as

x = As. (4)

Sometimes we need the columns of matrixA; denoting them bya j the model can also be written as

x =
n

∑
i=1

aisi . (5)

The statistical model in Eq. 4 is called independent component analysis, or ICA model. The ICA model is a
generative model, which means that it describes how the observed data are generated by a process of mixing the
componentssi . The independent components are latent variables, meaningthat they cannot be directly observed.
Also the mixing matrix is assumed to be unknown. All we observe is the random vectorx, and we must estimate
bothA andsusing it. This must be done under as general assumptions as possible.

The starting point for ICA is the very simple assumption thatthe componentssi are statisticallyindependent.
Statistical independence will be rigorously defined in Section 3. It will be seen below that we must also assume that
the independent component must havenongaussiandistributions. However, in the basic model we donot assume
these distributions known (if they are known, the problem isconsiderably simplified.) For simplicity, we are also
assuming that the unknown mixing matrix is square, but this assumption can be sometimes relaxed, as explained
in Section 4.5. Then, after estimating the matrixA, we can compute its inverse, sayW, and obtain the independent
component simply by:

s= Wx. (6)

ICA is very closely related to the method calledblind source separation(BSS) or blind signal separation. A
“source” means here an original signal, i.e. independent component, like the speaker in a cocktail party problem.
“Blind” means that we no very little, if anything, on the mixing matrix, and make little assumptions on the source
signals. ICA is one method, perhaps the most widely used, forperforming blind source separation.

In many applications, it would be more realistic to assume that there is some noise in the measurements (see
e.g. (Hyvärinen, 1998a; Hyvärinen, 1999c)), which would mean adding a noise term in the model. For simplicity,
we omit any noise terms, since the estimation of the noise-free model is difficult enough in itself, and seems to be
sufficient for many applications.

2.2 Ambiguities of ICA

In the ICA model in Eq. (4), it is easy to see that the followingambiguities will hold:

1. We cannot determine the variances (energies) of the independent components.

The reason is that, boths andA being unknown, any scalar multiplier in one of the sourcessi could always
be cancelled by dividing the corresponding columnai of A by the same scalar; see eq. (5). As a consequence,
we may quite as well fix the magnitudes of the independent components; as they are random variables, the most
natural way to do this is to assume that each has unit variance: E{s2

i }= 1. Then the matrixA will be adapted in the
ICA solution methods to take into account this restriction.Note that this still leaves the ambiguity of the sign: we
could multiply the an independent component by−1 without affecting the model. This ambiguity is, fortunately,
insignificant in most applications.

2. We cannot determine the order of the independent components.

The reason is that, again boths andA being unknown, we can freely change the order of the terms in the sum
in (5), and call any of the independent components the first one. Formally, a permutation matrixP and its inverse
can be substituted in the model to givex = AP−1Ps. The elements ofPsare the original independent variablessj ,
but in another order. The matrixAP−1 is just a new unknown mixing matrix, to be solved by the ICA algorithms.
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2.3 Illustration of ICA

To illustrate the ICA model in statistical terms, consider two independent components that have the following
uniform distributions:

p(si) =

{

1
2
√

3
if |si | ≤

√
3

0 otherwise
(7)

The range of values for this uniform distribution were chosen so as to make the mean zero and the variance equal
to one, as was agreed in the previous Section. The joint density of s1 ands2 is then uniform on a square. This
follows from the basic definition that the joint density of two independent variables is just the product of their
marginal densities (see Eq. 10): we need to simply compute the product. The joint density is illustrated in Figure 5
by showing data points randomly drawn from this distribution.

Now let as mix these two independent components. Let us take the following mixing matrix:

A0 =

(

2 3
2 1

)

(8)

This gives us two mixed variables,x1 andx2. It is easily computed that the mixed data has a uniform distribution
on a parallelogram, as shown in Figure 6. Note that the randomvariablesx1 andx2 are not independent any more;
an easy way to see this is to consider, whether it is possible to predict the value of one of them, sayx2, from the
value of the other. Clearly ifx1 attains one of its maximum or minimum values, then this completely determines
the value ofx2. They are therefore not independent. (For variabless1 ands2 the situation is different: from Fig. 5
it can be seen that knowing the value ofs1 does not in any way help in guessing the value ofs2.)

The problem of estimating the data model of ICA is now to estimate the mixing matrixA0 using only infor-
mation contained in the mixturesx1 andx2. Actually, you can see from Figure 6 an intuitive way of estimatingA:
The edges of the parallelogram are in the directions of the columns ofA. This means that we could, in principle,
estimate the ICA model by first estimating the joint density of x1 andx2, and then locating the edges. So, the
problem seems to have a solution.

In reality, however, this would be a very poor method becauseit only works with variables that have exactly
uniform distributions. Moreover, it would be computationally quite complicated. What we need is a method that
works for any distributions of the independent components,and works fast and reliably.

Next we shall consider the exact definition of independence before starting to develop methods for estimation
of the ICA model.

3 What is independence?

3.1 Definition and fundamental properties

To define the concept of independence, consider two scalar-valued random variablesy1 andy2. Basically, the
variablesy1 andy2 are said to be independent if information on the value ofy1 does not give any information on
the value ofy2, and vice versa. Above, we noted that this is the case with thevariabless1,s2 but not with the
mixture variablesx1,x2.

Technically, independence can be defined by the probabilitydensities. Let us denote byp(y1,y2) the joint
probability density function (pdf) ofy1 andy2. Let us further denote byp1(y1) the marginal pdf ofy1, i.e. the pdf
of y1 when it is considered alone:

p1(y1) =
∫

p(y1,y2)dy2, (9)

and similarly fory2. Then we define thaty1 andy2 are independent if and only if the joint pdf isfactorizablein the
following way:

p(y1,y2) = p1(y1)p2(y2). (10)

This definition extends naturally for any numbern of random variables, in which case the joint density must be a
product ofn terms.
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The definition can be used to derive a most important propertyof independent random variables. Given two
functions,h1 andh2, we always have

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)}. (11)

This can be proven as follows:

E{h1(y1)h2(y2)} =

∫ ∫

h1(y1)h2(y2)p(y1,y2)dy1dy2

=

∫ ∫

h1(y1)p1(y1)h2(y2)p2(y2)dy1dy2 =

∫

h1(y1)p1(y1)dy1

∫

h2(y2)p2(y2)dy2

= E{h1(y1)}E{h2(y2)}. (12)

3.2 Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness. Two random variablesy1 andy2 are said to be uncorrelated,
if their covariance is zero:

E{y1y2}−E{y1}E{y2} = 0 (13)

If the variables are independent, they are uncorrelated, which follows directly from Eq. (11), takingh1(y1) = y1

andh2(y2) = y2.
On the other hand, uncorrelatedness doesnot imply independence. For example, assume that(y1,y2) are

discrete valued and follow such a distribution that the pairare with probability 1/4 equal to any of the following
values:(0,1),(0,−1),(1,0),(−1,0). Theny1 andy2 are uncorrelated, as can be simply calculated. On the other
hand,

E{y2
1y2

2} = 0 6= 1
4

= E{y2
1}E{y2

2}. (14)

so the condition in Eq. (11) is violated, and the variables cannot be independent.
Since independence implies uncorrelatedness, many ICA methods constrain the estimation procedure so that it

always gives uncorrelated estimates of the independent components. This reduces the number of free parameters,
and simplifies the problem.

3.3 Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the independent components must be nongaussian for ICA to be possible.
To see why gaussian variables make ICA impossible, assume that the mixing matrix is orthogonal and thesi

are gaussian. Thenx1 andx2 are gaussian, uncorrelated, and of unit variance. Their joint density is given by

p(x1,x2) =
1
2π

exp(−x2
1 +x2

2

2
) (15)

This distribution is illustrated in Fig. 7. The Figure showsthat the density is completely symmetric. Therefore, it
does not contain any information on the directions of the columns of the mixing matrixA. This is whyA cannot
be estimated.

More rigorously, one can prove that the distribution of any orthogonal transformation of the gaussian(x1,x2)
has exactly the same distribution as(x1,x2), and thatx1 andx2 are independent. Thus, in the case of gaussian
variables, we can only estimate the ICA model up to an orthogonal transformation. In other words, the matrixA
is not identifiable for gaussian independent components. (Actually, if just one of the independent components is
gaussian, the ICA model can still be estimated.)
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4 Principles of ICA estimation

4.1 “Nongaussian is independent”

Intuitively speaking, the key to estimating the ICA model isnongaussianity. Actually, without nongaussianity the
estimation is not possible at all, as mentioned in Sec. 3.3. This is at the same time probably the main reason for
the rather late resurgence of ICA research: In most of classical statistical theory, random variables are assumed to
have gaussian distributions, thus precluding any methods related to ICA.

The Central Limit Theorem, a classical result in probability theory, tells that the distribution of a sum of
independent random variables tends toward a gaussian distribution, under certain conditions. Thus, a sum of two
independent random variables usually has a distribution that is closer to gaussian than any of the two original
random variables.

Let us now assume that the data vectorx is distributed according to the ICA data model in Eq. 4, i.e. it
is a mixture of independent components. For simplicity, letus assume in this section that all the independent
components have identical distributions. To estimate one of the independent components, we consider a linear
combination of thexi (see eq. 6); let us denote this byy = wTx = ∑i wixi , wherew is a vector to be determined. If
w were one of the rows of the inverse ofA, this linear combination would actually equal one of the independent
components. The question is now: How could we use the CentralLimit Theorem to determinew so that it would
equal one of the rows of the inverse ofA? In practice, we cannot determine such aw exactly, because we have no
knowledge of matrixA, but we can find an estimator that gives a good approximation.

To see how this leads to the basic principle of ICA estimation, let us make a change of variables, defining
z = ATw. Then we havey = wTx = wTAs = zTs. y is thus a linear combination ofsi , with weights given byzi .
Since a sum of even two independent random variables is more gaussian than the original variables,zTs is more
gaussian than any of thesi and becomes least gaussian when it in fact equals one of thesi . In this case, obviously
only one of the elementszi of z is nonzero. (Note that thesi were here assumed to have identical distributions.)

Therefore, we could take asw a vector thatmaximizes the nongaussianityof wTx. Such a vector would
necessarily correspond (in the transformed coordinate system) to az which has only one nonzero component. This
means thatwTx = zTsequals one of the independent components!

Maximizing the nongaussianity ofwTx thus gives us one of the independent components. In fact, theopti-
mization landscape for nongaussianity in then-dimensional space of vectorsw has 2n local maxima, two for each
independent component, corresponding tosi and−si (recall that the independent components can be estimated
only up to a multiplicative sign). To find several independent components, we need to find all these local maxima.
This is not difficult, because the different independent components are uncorrelated: We can always constrain the
search to the space that gives estimates uncorrelated with the previous ones. This corresponds to orthogonalization
in a suitably transformed (i.e. whitened) space.

Our approach here is rather heuristic, but it will be seen in the next section and Sec. 4.3 that it has a perfectly
rigorous justification.

4.2 Measures of nongaussianity

To use nongaussianity in ICA estimation, we must have a quantitative measure of nongaussianity of a random
variable, sayy. To simplify things, let us assume thaty is centered (zero-mean) and has variance equal to one.
Actually, one of the functions of preprocessing in ICA algorithms, to be covered in Section 5, is to make this
simplification possible.

4.2.1 Kurtosis

The classical measure of nongaussianity is kurtosis or the fourth-order cumulant. The kurtosis ofy is classically
defined by

kurt(y) = E{y4}−3(E{y2})2 (16)

Actually, since we assumed thaty is of unit variance, the right-hand side simplifies toE{y4}−3. This shows that
kurtosis is simply a normalized version of the fourth momentE{y4}. For a gaussiany, the fourth moment equals
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3(E{y2})2. Thus, kurtosis is zero for a gaussian random variable. For most (but not quite all) nongaussian random
variables, kurtosis is nonzero.

Kurtosis can be both positive or negative. Random variablesthat have a negative kurtosis are called sub-
gaussian, and those with positive kurtosis are called supergaussian. In statistical literature, the corresponding
expressions platykurtic and leptokurtic are also used. Supergaussian random variables have typically a “spiky”
pdf with heavy tails, i.e. the pdf is relatively large at zeroand at large values of the variable, while being small
for intermediate values. A typical example is the Laplace distribution, whose pdf (normalized to unit variance) is
given by

p(y) =
1√
2

exp(
√

2|y|) (17)

This pdf is illustrated in Fig. 8. Subgaussian random variables, on the other hand, have typically a “flat” pdf, which
is rather constant near zero, and very small for larger values of the variable. A typical example is the uniform
distibution in eq. (7).

Typically nongaussianity is measured by the absolute valueof kurtosis. The square of kurtosis can also be
used. These are zero for a gaussian variable, and greater than zero for most nongaussian random variables. There
are nongaussian random variables that have zero kurtosis, but they can be considered as very rare.

Kurtosis, or rather its absolute value, has been widely usedas a measure of nongaussianity in ICA and related
fields. The main reason is its simplicity, both computational and theoretical. Computationally, kurtosis can be
estimated simply by using the fourth moment of the sample data. Theoretical analysis is simplified because of the
following linearity property: Ifx1 andx2 are two independent random variables, it holds

kurt(x1 +x2) = kurt(x1)+ kurt(x2) (18)

and
kurt(αx1) = α4 kurt(x1) (19)

whereα is a scalar. These properties can be easily proven using the definition.
To illustrate in a simple example what the optimization landscape for kurtosis looks like, and how independent

components could be found by kurtosis minimization or maximization, let us look at a 2-dimensional modelx =
As. Assume that the independent componentss1,s2 have kurtosis values kurt(s1), kurt(s2), respectively, both
different from zero. Remember that we assumed that they haveunit variances. We seek for one of the independent
components asy = wTx.

Let us again make the transformationz = ATw. Then we havey = wTx = wTAs = zTs= z1s1 + z2s2. Now,
based on the additive property of kurtosis, we have kurt(y) = kurt(z1s1)+ kurt(z2s2) = z4

1 kurt(s1)+ z4
2 kurt(s2).

On the other hand, we made the constraint that the variance ofy is equal to 1, based on the same assumption
concernings1,s2. This implies a constraint onz: E{y2} = z2

1 +z2
2 = 1. Geometrically, this means that vectorz is

constrained to the unit circle on the 2-dimensional plane. The optimization problem is now: what are the maxima
of the function|kurt(y)| = |z4

1 kurt(s1)+z4
2 kurt(s2)| on the unit circle? For simplicity, you may consider that the

kurtosis are of the same sign, in which case it absolute valueoperators can be omitted. The graph of this function
is the "optimization landscape" for the problem.

It is not hard to show (Delfosse and Loubaton, 1995) that the maxima are at the points when exactly one of the
elements of vectorz is zero and the other nonzero; because of the unit circle constraint, the nonzero element must
be equal to 1 or -1. But these points are exactly the ones wheny equals one of the independent components±si ,
and the problem has been solved.

In practice we would start from some weight vectorw, compute the direction in which the kurtosis ofy = wTx
is growing most strongly (if kurtosis is positive) or decreasing most strongly (if kurtosis is negative) based on the
available samplex(1), ...,x(T) of mixture vectorx, and use a gradient method or one of their extensions for finding
a new vectorw. The example can be generalized to arbitrary dimensions, showing that kurtosis can theoretically
be used as an optimization criterion for the ICA problem.

However, kurtosis has also some drawbacks in practice, whenits value has to be estimated from a measured
sample. The main problem is that kurtosis can be very sensitive to outliers (Huber, 1985). Its value may depend on
only a few observations in the tails of the distribution, which may be erroneous or irrelevant observations. In other
words, kurtosis is not a robust measure of nongaussianity.
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Thus, other measures of nongaussianity might be better thankurtosis in some situations. Below we shall
consider negentropy whose properties are rather opposite to those of kurtosis, and finally introduce approximations
of negentropy that more or less combine the good properties of both measures.

4.2.2 Negentropy

A second very important measure of nongaussianity is given by negentropy. Negentropy is based on the information-
theoretic quantity of (differential) entropy.

Entropy is the basic concept of information theory. The entropy of a random variable can be interpreted as
the degree of information that the observation of the variable gives. The more “random”, i.e. unpredictable and
unstructured the variable is, the larger its entropy. More rigorously, entropy is closely related to the coding length
of the random variable, in fact, under some simplifying assumptions, entropyis the coding length of the random
variable. For introductions on information theory, see e.g. (Cover and Thomas, 1991; Papoulis, 1991).

EntropyH is defined for a discrete random variableY as

H(Y) = −∑
i

P(Y = ai) logP(Y = ai) (20)

where theai are the possible values ofY. This very well-known definition can be generalized for continuous-valued
random variables and vectors, in which case it is often called differential entropy. The differential entropyH of a
random vectory with density f (y) is defined as (Cover and Thomas, 1991; Papoulis, 1991):

H(y) = −
∫

f (y) log f (y)dy. (21)

A fundamental result of information theory is thata gaussian variable has the largest entropy among all
random variables of equal variance. For a proof, see e.g. (Cover and Thomas, 1991; Papoulis, 1991). This means
that entropy could be used as a measure of nongaussianity. Infact, this shows that the gaussian distribution is
the “most random” or the least structured of all distributions. Entropy is small for distributions that are clearly
concentrated on certain values, i.e., when the variable is clearly clustered, or has a pdf that is very “spiky”.

To obtain a measure of nongaussianity that is zero for a gaussian variable and always nonnegative, one often
uses a slightly modified version of the definition of differential entropy, called negentropy. NegentropyJ is defined
as follows

J(y) = H(ygauss)−H(y) (22)

whereygauss is a Gaussian random variable of the same covariance matrix as y. Due to the above-mentioned
properties, negentropy is always non-negative, and it is zero if and only if y has a Gaussian distribution. Negen-
tropy has the additional interesting property that it is invariant for invertible linear transformations (Comon, 1994;
Hyvärinen, 1999e).

The advantage of using negentropy, or, equivalently, differential entropy, as a measure of nongaussianity is that
it is well justified by statistical theory. In fact, negentropy is in some sense the optimal estimator of nongaussianity,
as far as statistical properties are concerned. The problemin using negentropy is, however, that it is computationally
very difficult. Estimating negentropy using the definition would require an estimate (possibly nonparametric) of
the pdf. Therefore, simpler approximations of negentropy are very useful, as will be discussed next.

4.2.3 Approximations of negentropy

The estimation of negentropy is difficult, as mentioned above, and therefore this contrast function remains mainly
a theoretical one. In practice, some approximation have to be used. Here we introduce approximations that have
very promising properties, and which will be used in the following to derive an efficient method for ICA.

The classical method of approximating negentropy is using higher-order moments, for example as follows
(Jones and Sibson, 1987):

J(y) ≈ 1
12

E{y3}2 +
1
48

kurt(y)2 (23)
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The random variabley is assumed to be of zero mean and unit variance. However, the validity of such approxima-
tions may be rather limited. In particular, these approximations suffer from the nonrobustness encountered with
kurtosis.

To avoid the problems encountered with the preceding approximations of negentropy, new approximations
were developed in (Hyvärinen, 1998b). These approximationwere based on the maximum-entropy principle. In
general we obtain the following approximation:

J(y) ≈
p

∑
i=1

ki [E{Gi(y)}−E{Gi(ν)}]2, (24)

whereki are some positive constants, andν is a Gaussian variable of zero mean and unit variance (i.e., standard-
ized). The variabley is assumed to be of zero mean and unit variance, and the functionsGi are some nonquadratic
functions (Hyvärinen, 1998b). Note that even in cases wherethis approximation is not very accurate, (24) can be
used to construct a measure of nongaussianity that is consistent in the sense that it is always non-negative, and
equal to zero ify has a Gaussian distribution.

In the case where we use only one nonquadratic functionG, the approximation becomes

J(y) ∝ [E{G(y)}−E{G(ν)}]2 (25)

for practically any non-quadratic functionG. This is clearly a generalization of the moment-based approximation in
(23), if y is symmetric. Indeed, takingG(y) = y4, one then obtains exactly (23), i.e. a kurtosis-based approximation.

But the point here is that by choosingG wisely, one obtains approximations of negentropy that are much
better than the one given by (23). In particular, choosingG that does not grow too fast, one obtains more robust
estimators. The following choices ofG have proved very useful:

G1(u) =
1
a1

logcosha1u, G2(u) = −exp(−u2/2) (26)

where 1≤ a1 ≤ 2 is some suitable constant.
Thus we obtain approximations of negentropy that give a verygood compromise between the properties of

the two classical nongaussianity measures given by kurtosis and negentropy. They are conceptually simple, fast
to compute, yet have appealing statistical properties, especially robustness. Therefore, we shall use these contrast
functions in our ICA methods. Since kurtosis can be expressed in this same framework, it can still be used by our
ICA methods. A practical algorithm based on these contrast function will be presented in Section 6.

4.3 Minimization of Mutual Information

Another approach for ICA estimation, inspired by information theory, is minimization of mutual information. We
will explain this approach here, and show that it leads to thesame principle of finding most nongaussian directions
as was described above. In particular, this approach gives arigorous justification for the heuristic principles used
above.

4.3.1 Mutual Information

Using the concept of differential entropy, we define the mutual informationI betweenm (scalar) random variables,
yi , i = 1...mas follows

I(y1,y2, ...,ym) =
m

∑
i=1

H(yi)−H(y). (27)

Mutual information is a natural measure of the dependence between random variables. In fact, it is equivalent
to the well-known Kullback-Leibler divergence between thejoint density f (y) and the product of its marginal
densities; a very natural measure for independence. It is always non-negative, and zero if and only if the variables
are statistically independent. Thus, mutual information takes into account the whole dependence structure of the
variables, and not only the covariance, like PCA and relatedmethods.
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Mutual information can be interpreted by using the interpretation of entropy as code length. The termsH(yi)
give the lengths of codes for theyi when these are coded separately, andH(y) gives the code length wheny is
coded as a random vector, i.e. all the components are coded inthe same code. Mutual information thus shows what
code length reduction is obtained by coding the whole vectorinstead of the separate components. In general, better
codes can be obtained by coding the whole vector. However, iftheyi are independent, they give no information on
each other, and one could just as well code the variables separately without increasing code length.

An important property of mutual information (Papoulis, 1991; Cover and Thomas, 1991) is that we have for an
invertible linear transformationy = Wx:

I(y1,y2, ...,yn) = ∑
i

H(yi)−H(x)− log|detW|. (28)

Now, let us consider what happens if we constrain theyi to beuncorrelatedand of unit variance. This means
E{yyT} = WE{xxT}WT = I , which implies

detI = 1 = (detWE{xxT}WT) = (detW)(detE{xxT})(detWT), (29)

and this implies that detW must be constant. Moreover, foryi of unit variance, entropy and negentropy differ only
by a constant, and the sign. Thus we obtain,

I(y1,y2, ...,yn) = C−∑
i

J(yi). (30)

whereC is a constant that does not depend onW. This shows the fundamental relation between negentropy and
mutual information.

4.3.2 Defining ICA by Mutual Information

Since mutual information is the natural information-theoretic measure of the independence of random variables,
we could use it as the criterion for finding the ICA transform.In this approach that is an alternative to the model
estimation approach, we define the ICA of a random vectorx as an invertible transformation as in (6), where the
matrixW is determined so that the mutual information of the transformed componentssi is minimized.

It is now obvious from (30) that finding an invertible transformationW that minimizes the mutual information is
roughly equivalent tofinding directions in which the negentropy is maximized. More precisely, it is roughly equiva-
lent to finding 1-D subspaces such that the projections in those subspaces have maximum negentropy. Rigorously,
speaking, (30) shows that ICA estimation by minimization ofmutual information is equivalent to maximizing the
sum of nongaussianities of the estimates, when theestimates are constrained to be uncorrelated. The constraint
of uncorrelatedness is in fact not necessary, but simplifiesthe computations considerably, as one can then use the
simpler form in (30) instead of the more complicated form in (28).

Thus, we see that the formulation of ICA as minimization of mutual information gives another rigorous justi-
fication of our more heuristically introduced idea of findingmaximally nongaussian directions.

4.4 Maximum Likelihood Estimation

4.4.1 The likelihood

A very popular approach for estimating the ICA model is maximum likelihood estimation, which is closely con-
nected to the infomax principle. Here we discuss this approach, and show that it is essentially equivalent to
minimization of mutual information.

It is possible to formulate directly the likelihood in the noise-free ICA model, which was done in (Pham et al.,
1992), and then estimate the model by a maximum likelihood method. Denoting byW = (w1, ...,wn)

T the matrix
A−1, the log-likelihood takes the form (Pham et al., 1992):

L =
T

∑
t=1

n

∑
i=1

log fi(wT
i x(t))+T log|detW| (31)
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where thefi are the density functions of thesi (here assumed to be known), and thex(t),t = 1, ...,T are the
realizations ofx. The term log|detW| in the likelihood comes from the classic rule for (linearly)transforming
random variables and their densities (Papoulis, 1991): In general, for any random vectorx with densitypx and for
any matrixW, the density ofy = Wx is given bypx(Wx)|detW|.

4.4.2 The Infomax Principle

Another related contrast function was derived from a neuralnetwork viewpoint in (Bell and Sejnowski, 1995;
Nadal and Parga, 1994). This was based on maximizing the output entropy (or information flow) of a neural
network with non-linear outputs. Assume thatx is the input to the neural network whose outputs are of the form
φi(wT

i x), where theφi are some non-linear scalar functions, and thewi are the weight vectors of the neurons. One
then wants to maximize the entropy of the outputs:

L2 = H(φ1(wT
1 x), ...,φn(wT

n x)). (32)

If the φi are well chosen, this framework also enables the estimationof the ICA model. Indeed, several authors, e.g.,
(Cardoso, 1997; Pearlmutter and Parra, 1997), proved the surprising result that the principle of network entropy
maximization, or “infomax”, is equivalent to maximum likelihood estimation. This equivalence requires that the
non-linearitiesφi used in the neural network are chosen as the cumulative distribution functions corresponding to
the densitiesfi , i.e.,φ′i(.) = fi(.).

4.4.3 Connection to mutual information

To see the connection between likelihood and mutual information, consider the expectation of the log-likelihood:

1
T

E{L} =
n

∑
i=1

E{log fi(wT
i x)}+ log|detW|. (33)

Actually, if the fi were equal to the actual distributions ofwT
i x, the first term would be equal to−∑i H(wT

i x).
Thus the likelihood would be equal, up to an additive constant, to the negative of mutual information as given in
Eq. (28).

Actually, in practice the connection is even stronger. Thisis because in practice we don’t know the distributions
of the independent components. A reasonable approach wouldbe to estimate the density ofwT

i x as part of the ML
estimation method, and use this as an approximation of the density of si . In this case, likelihood and mutual
information are, for all practical purposes, equivalent.

Nevertheless, there is a small difference that may be very important in practice. The problem with maximum
likelihood estimation is that the densitiesfi must be estimated correctly. They need not be estimated withany
great precision: in fact it is enough to estimate whether they are sub- or supergaussian (Cardoso and Laheld, 1996;
Hyvärinen and Oja, 1998; Lee et al., 1999). In many cases, in fact, we have enough prior knowledge on the
independent components, and we don’t need to estimate theirnature from the data. In any case, if the information
on the nature of the independent components is not correct, ML estimation will give completely wrong results.
Some care must be taken with ML estimation, therefore. In contrast, using reasonable measures of nongaussianity,
this problem does not usually arise.

4.5 ICA and Projection Pursuit

It is interesting to note how our approach to ICA makes explicit the connection between ICA and projection
pursuit. Projection pursuit (Friedman and Tukey, 1974; Friedman, 1987; Huber, 1985; Jones and Sibson, 1987) is
a technique developed in statistics for finding “interesting” projections of multidimensional data. Such projections
can then be used for optimal visualization of the data, and for such purposes as density estimation and regression.
In basic (1-D) projection pursuit, we try to find directions such that the projections of the data in those directions
have interesting distributions, i.e., display some structure. It has been argued by Huber (Huber, 1985) and by Jones
and Sibson (Jones and Sibson, 1987) that the Gaussian distribution is the least interesting one, and that the most

11



interesting directions are those that show the least Gaussian distribution. This is exactly what we do to estimate
the ICA model.

The usefulness of finding such projections can be seen in Fig.9, where the projection on the projection pursuit
direction, which is horizontal, clearly shows the clustered structure of the data. The projection on the first principal
component (vertical), on the other hand, fails to show this structure.

Thus, in the general formulation, ICA can be considered a variant of projection pursuit. All the nongaussianity
measures and the corresponding ICA algorithms presented here could also be called projection pursuit “indices”
and algorithms. In particular, the projection pursuit allows us to tackle the situation where there are less indepen-
dent componentssi than original variablesxi is. Assuming that those dimensions of the space that are not spanned
by the independent components are filled by gaussian noise, we see that computing the nongaussian projection
pursuit directions, we effectively estimate the independent components. When all the nongaussian directions have
been found, all the independent components have been estimated. Such a procedure can be interpreted as a hybrid
of projection pursuit and ICA.

However, it should be noted that in the formulation of projection pursuit, no data model or assumption about
independent components is made. If the ICA model holds, optimizing the ICA nongaussianity measures produce
independent components; if the model does not hold, then what we get are the projection pursuit directions.

5 Preprocessing for ICA

In the preceding section, we discussed the statistical principles underlying ICA methods. Practical algorithms
based on these principles will be discussed in the next section. However, before applying an ICA algorithm on the
data, it is usually very useful to do some preprocessing. In this section, we discuss some preprocessing techniques
that make the problem of ICA estimation simpler and better conditioned.

5.1 Centering

The most basic and necessary preprocessing is to centerx, i.e. subtract its mean vectorm = E{x} so as to makex
a zero-mean variable. This implies thats is zero-mean as well, as can be seen by taking expectations onboth sides
of Eq. (4).

This preprocessing is made solely to simplify the ICA algorithms: It does not mean that the mean could not be
estimated. After estimating the mixing matrixA with centered data, we can complete the estimation by addingthe
mean vector ofsback to the centered estimates ofs. The mean vector ofs is given byA−1m, wherem is the mean
that was subtracted in the preprocessing.

5.2 Whitening

Another useful preprocessing strategy in ICA is to first whiten the observed variables. This means that before
the application of the ICA algorithm (and after centering),we transform the observed vectorx linearly so that we
obtain a new vector̃x which is white, i.e. its components are uncorrelated and their variances equal unity. In other
words, the covariance matrix ofx̃ equals the identity matrix:

E{x̃x̃T} = I . (34)

The whitening transformation is always possible. One popular method for whitening is to use the eigen-value
decomposition (EVD) of the covariance matrixE{xxT}= EDET , whereE is the orthogonal matrix of eigenvectors
of E{xxT} andD is the diagonal matrix of its eigenvalues,D = diag(d1, ...,dn). Note thatE{xxT} can be estimated
in a standard way from the available samplex(1), ...,x(T). Whitening can now be done by

x̃ = ED−1/2ETx (35)

where the matrixD−1/2is computed by a simple component-wise operation asD−1/2 = diag(d−1/2
1 , ...,d−1/2

n ). It
is easy to check that nowE{x̃x̃T} = I .
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Whitening transforms the mixing matrix into a new one,Ã. We have from (4) and (35):

x̃ = ED−1/2ETAs = Ãs (36)

The utility of whitening resides in the fact that the new mixing matrixÃ is orthogonal. This can be seen from

E{x̃x̃T} = ÃE{ssT}ÃT = ÃÃT = I . (37)

Here we see that whitening reduces the number of parameters to be estimated. Instead of having to estimate the
n2 parameters that are the elements of the original matrixA, we only need to estimate the new, orthogonal mixing
matrix Ã. An orthogonal matrix containsn(n− 1)/2 degrees of freedom. For example, in two dimensions, an
orthogonal transformation is determined by a single angle parameter. In larger dimensions, an orthogonal matrix
contains only about half of the number of parameters of an arbitrary matrix. Thus one can say that whitening
solves half of the problem of ICA. Because whitening is a verysimple and standard procedure, much simpler than
any ICA algorithms, it is a good idea to reduce the complexityof the problem this way.

It may also be quite useful to reduce the dimension of the dataat the same time as we do the whitening. Then
we look at the eigenvaluesd j of E{xxT} and discard those that are too small, as is often done in the statistical
technique of principal component analysis. This has often the effect of reducing noise. Moreover, dimension
reduction prevents overlearning, which can sometimes be observed in ICA (Hyvärinen et al., 1999).

A graphical illustration of the effect of whitening can be seen in Figure 10, in which the data in Figure 6
has been whitened. The square defining the distribution is now clearly a rotated version of the original square in
Figure 5. All that is left is the estimation of a single angle that gives the rotation.

In the rest of this paper, we assume that the data has been preprocessed by centering and whitening. For
simplicity of notation, we denote the preprocessed data just by x, and the transformed mixing matrix byA, omitting
the tildes.

5.3 Further preprocessing

The success of ICA for a given data set may depende crucially on performing some application-dependent prepro-
cessing steps. For example, if the data consists of time-signals, some band-pass filtering may be very useful. Note
that if we filter linearly the observed signalsxi(t) to obtain new signals, sayx∗i (t), the ICA model still holds for
x∗i (t), with the same mixing matrix.

This can be seen as follows. Denote byX the matrix that contains the observationsx(1), ...,x(T) as its columns,
and similarly forS. Then the ICA model can be expressed as:

X = AS (38)

Now, time filtering ofX corresponds to multiplyingX from the rightby a matrix, let us call itM . This gives

X∗ = XM = ASM = AS∗, (39)

which shows that the ICA model remains still valid.

6 The FastICA Algorithm

In the preceding sections, we introduced different measures of nongaussianity, i.e. objective functions for ICA
estimation. In practice, one also needs an algorithm for maximizing the contrast function, for example the one in
(25). In this section, we introduce a very efficient method ofmaximization suited for this task. It is here assumed
that the data is preprocessed by centering and whitening as discussed in the preceding section.
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6.1 FastICA for one unit

To begin with, we shall show the one-unit version of FastICA.By a "unit" we refer to a computational unit,
eventually an artificial neuron, having a weight vectorw that the neuron is able to update by a learning rule. The
FastICA learning rule finds a direction, i.e. a unit vectorw such that the projectionwTx maximizes nongaussianity.
Nongaussianity is here measured by the approximation of negentropyJ(wTx) given in (25). Recall that the variance
of wTx must here be constrained to unity; for whitened data this is equivalent to constraining the norm ofw to be
unity.

The FastICA is based on a fixed-point iteration scheme for finding a maximum of the nongaussianity ofwTx,
as measured in (25), see (Hyvärinen and Oja, 1997; Hyvärinen, 1999a). It can be also derived as an approximative
Newton iteration (Hyvärinen, 1999a). Denote byg the derivative of the nonquadratic functionG used in (25); for
example the derivatives of the functions in (26) are:

g1(u) = tanh(a1u), (40)

g2(u) = uexp(−u2/2)

where 1≤ a1 ≤ 2 is some suitable constant, often taken asa1 = 1. The basic form of the FastICA algorithm is as
follows:

1. Choose an initial (e.g. random) weight vectorw.

2. Letw+ = E{xg(wTx)}−E{g′(wTx)}w

3. Letw = w+/‖w+‖

4. If not converged, go back to 2.

Note that convergence means that the old and new values ofw point in the same direction, i.e. their dot-product is
(almost) equal to 1. It is not necessary that the vector converges to a single point, sincew and−w define the same
direction. This is again because the independent components can be defined only up to a multiplicative sign. Note
also that it is here assumed that the data is prewhitened.

The derivation of FastICA is as follows. First note that the maxima of the approximation of the negentropy of
wTx are obtained at certain optima ofE{G(wTx)}. According to the Kuhn-Tucker conditions (Luenberger, 1969),
the optima ofE{G(wTx)} under the constraintE{(wTx)2} = ‖w‖2 = 1 are obtained at points where

E{xg(wTx)}−βw = 0 (41)

Let us try to solve this equation by Newton’s method. Denoting the function on the left-hand side of (41) byF , we
obtain its Jacobian matrixJF(w) as

JF(w) = E{xxTg′(wTx)}−βI (42)

To simplify the inversion of this matrix, we decide to approximate the first term in (42). Since the data is sphered,
a reasonable approximation seems to beE{xxTg′(wTx)} ≈ E{xxT}E{g′(wTx)} = E{g′(wTx)}I . Thus the Jaco-
bian matrix becomes diagonal, and can easily be inverted. Thus we obtain the following approximative Newton
iteration:

w+ = w− [E{xg(wTx)}−βw]/[E{g′(wTx)}−β] (43)

This algorithm can be further simplified by multiplying bothsides of (43) byβ−E{g′(wTx)}. This gives, after
algebraic simplication, the FastICA iteration.

In practice, the expectations in FastICA must be replaced bytheir estimates. The natural estimates are of
course the corresponding sample means. Ideally, all the data available should be used, but this is often not a good
idea because the computations may become too demanding. Then the averages can be estimated using a smaller
sample, whose size may have a considerable effect on the accuracy of the final estimates. The sample points should
be chosen separately at every iteration. If the convergenceis not satisfactory, one may then increase the sample
size.
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6.2 FastICA for several units

The one-unit algorithm of the preceding subsection estimates just one of the independent components, or one
projection pursuit direction. To estimate several independent components, we need to run the one-unit FastICA
algorithm using several units (e.g. neurons) with weight vectorsw1, ...,wn.

To prevent different vectors from converging to the same maxima we mustdecorrelatethe outputswT
1 x, ...,wT

n x
after every iteration. We present here three methods for achieving this.

A simple way of achieving decorrelation is a deflation schemebased on a Gram-Schmidt-like decorrelation.
This means that we estimate the independent components one by one. When we have estimatedp independent
components, orp vectorsw1, ...,wp, we run the one-unit fixed-point algorithm forwp+1, and after every iteration
step subtract fromwp+1 the “projections”wT

p+1w jw j , j = 1, ..., p of the previously estimatedp vectors, and then
renormalizewp+1:

1. Letwp+1 = wp+1−∑p
j=1wT

p+1w jw j

2. Letwp+1 = wp+1/
√

wT
p+1wp+1

(44)

In certain applications, however, it may be desired to use a symmetric decorrelation, in which no vectors are
“privileged” over others (Karhunen et al., 1997). This can be accomplished, e.g., by the classical method involving
matrix square roots,

Let W = (WWT)−1/2W (45)

whereW is the matrix(w1, ...,wn)
T of the vectors, and the inverse square root(WWT)−1/2 is obtained from the

eigenvalue decomposition ofWWT = FDFT as(WWT)−1/2 = FD−1/2FT . A simpler alternative is the following
iterative algorithm (Hyvärinen, 1999a),

1. LetW = W/
√

‖WWT‖
Repeat 2. until convergence:
2. LetW = 3

2W − 1
2WWTW

(46)

The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the largest absolute row (or column)
sum (but not the Frobenius norm).

6.3 FastICA and maximum likelihood

Finally, we give a version of FastICA that shows explicitly the connection to the well-known infomax or maximum
likelihood algorithm introduced in (Amari et al., 1996; Bell and Sejnowski, 1995; Cardoso and Laheld, 1996;
Cichocki and Unbehauen, 1996). If we express FastICA using the intermediate formula in (43), and write it in
matrix form (see (Hyvärinen, 1999b) for details), we see that FastICA takes the following form:

W+ = W +diag(αi)[diag(βi)+E{g(y)yT}]W. (47)

wherey = Wx, βi = −E{yig(yi)}, andαi = −1/(βi −E{g′(yi)}). The matrixW needs to be orthogonalized after
every step. In this matrix version, it is natural to orthogonalizeW symmetrically.

The above version of FastICA could be compared with the stochastic gradient method for maximizing likeli-
hood (Amari et al., 1996; Bell and Sejnowski, 1995; Cardoso and Laheld, 1996; Cichocki and Unbehauen, 1996):

W+ = W +µ[I +g(y)yT]W. (48)

whereµ is the learning rate, not necessarily constant in time. Here, g is a function of the pdf of the independent
components:g = f ′i / fi where thefi is the pdf of an independent component.

Comparing (47) and (48), we see that FastICA can be considered as a fixed-point algorithm for maximum
likelihood estimation of the ICA data model. For details, see (Hyvärinen, 1999b). In FastICA, convergence speed
is optimized by the choice of the matrices diag(αi) and diag(βi). Another advantage of FastICA is that it can
estimate both sub- and super-gaussian independent components, which is in contrast to ordinary ML algorithms,
which only work for a given class of distributions (see Sec. 4.4).
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6.4 Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast functions have a number of desirable properties when compared
with existing methods for ICA.

1. The convergence is cubic (or at least quadratic), under the assumption of the ICA data model (for a proof, see
(Hyvärinen, 1999a)). This is in contrast to ordinary ICA algorithms based on (stochastic) gradient descent
methods, where the convergence is only linear. This means a very fast convergence, as has been confirmed
by simulations and experiments on real data (see (Giannakopoulos et al., 1998)).

2. Contrary to gradient-based algorithms, there are no stepsize parameters to choose. This means that the
algorithm is easy to use.

3. The algorithm finds directly independent components of (practically) any non-Gaussian distribution using
any nonlinearityg. This is in contrast to many algorithms, where some estimateof the probability distribution
function has to be first available, and the nonlinearity mustbe chosen accordingly.

4. The performance of the method can be optimized by choosinga suitable nonlinearityg. In particular, one
can obtain algorithms that are robust and/or of minimum variance. In fact, the two nonlinearities in (40)
have some optimal properties; for details see (Hyvärinen, 1999a).

5. The independent components can be estimated one by one, which is roughly equivalent to doing projection
pursuit. This es useful in exploratory data analysis, and decreases the computational load of the method in
cases where only some of the independent components need to be estimated.

6. The FastICA has most of the advantages of neural algorithms: It is parallel, distributed, computationally
simple, and requires little memory space. Stochastic gradient methods seem to be preferable only if fast
adaptivity in a changing environment is required.

A MatlabTM implementation of the FastICA algorithm is available on theWorld Wide Web free of charge.1

7 Applications of ICA

In this section we review some applications of ICA. The most classical application of ICA, the cocktail-party
problem, was already explained in the opening section of this paper.

7.1 Separation of Artifacts in MEG Data

Magnetoencephalography (MEG) is a noninvasive technique by which the activity or the cortical neurons can be
measured with very good temporal resolution and moderate spatial resolution. When using a MEG record, as a
research or clinical tool, the investigator may face a problem of extracting the essential features of the neuromag-
netic signals in the presence of artifacts. The amplitude ofthe disturbances may be higher than that of the brain
signals, and the artifacts may resemble pathological signals in shape.

In (Vigário et al., 1998), the authors introduced a new method to separate brain activity from artifacts using
ICA. The approach is based on the assumption that the brain activity and the artifacts, e.g. eye movements or blinks,
or sensor malfunctions, are anatomically and physiologically separate processes, and this separation is reflected in
the statistical independence between the magnetic signalsgenerated by those processes. The approach follows the
earlier experiments with EEG signals, reported in (Vigário, 1997). A related approach is that of (Makeig et al.,
1996).

The MEG signals were recorded in a magnetically shielded room with a 122-channel whole-scalp Neuromag-
122 neuromagnetometer. This device collects data at 61 locations over the scalp, using orthogonal double-loop
pick-up coils that couple strongly to a local source just underneath. The test person was asked to blink and make
horizontal saccades, in order to produce typical ocular (eye) artifacts. Moreover, to produce myographic (muscle)

1WWW address:http://www.cis.hut.fi/projects/ica/fastica/
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artifacts, the subject was asked to bite his teeth for as longas 20 seconds. Yet another artifact was created by
placing a digital watch one meter away from the helmet into the shielded room.

Figure 11 presents a subset of 12 spontaneous MEG signalsxi(t) from the frontal, temporal, and occipital
areas (Vigário et al., 1998). The figure also shows the positions of the corresponding sensors on the helmet. Due
to the dimension of the data (122 magnetic signals were recorded), it is impractical to plot all the MEG signals
xi(t), i = 1, ...,122. Also two electro-oculogram channels and the electrocardiogram are presented, but they were
not used in computing the ICA.

The signal vectorx in the ICA model (4) consists now of the amplitudesxi(t) of the 122 signals at a certain
time point, so the dimensionality isn = 122. In the theoretical model,x is regarded as a random vector, and the
measurementsx(t) give a set of realizations ofx as time proceeds. Note that in the basic ICA model that we are
using, the temporal correlations in the signals are not utilized at all.

Thex(t) vectors were whitened using PCA and the dimensionality was decreased at the same time. Then, using
the FastICA algorithm, a subset of the rows of the separatingmatrix W of eq. (6) were computed. Once a vector
wi has become available, an ICA signalsi(t) can be computed fromsi(t) = wT

i x′(t) with x′(t) now denoting the
whitened and lower dimensional signal vector.

Figure 12 shows sections of 9 independent components (IC’s)si(t), i = 1, ...,9 found from the recorded data
together with the corresponding field patterns (Vigário et al., 1998). The first two IC’s are clearly due to the
musclular activity originated from the biting. Their separation into two components seems to correspond, on the
basis of the field patterns, to two different sets of muscles that were activated during the process. IC3 and IC5 are
showing the horizontal eye movements and the eye blinks, respectively. IC4 represents the cardiac artifact that is
very clearly extracted.

To find the remaining artifacts, the data were high-pass filtered, with cutoff frequency at 1 Hz. Next, the
independent component IC8 was found. It shows clearly the artifact originated at the digital watch, located to the
right side of the magnetometer. The last independent component IC9 is related to a sensor presenting higher RMS
(root mean squared) noise than the others.

The results of Fig. 12 clearly show that using the ICA technique and the FastICA algorithm, it is possible to
isolate both eye movement and eye blinking artifacts, as well as cardiac, myographic, and other artifacts from MEG
signals. The FastICA algorithm is an especially suitable tool, because artifact removal is an interactive technique
and the investigator may freely choose how many of the IC’s heor she wants.

In addition to reducing artifacts, ICA can be used to decompose evoked fields (Vigário et al., 1998), which en-
ables direct access to the underlying brain functioning, which is likely to be of great significance in neuroscientific
research.

7.2 Finding Hidden Factors in Financial Data

It is a tempting alternative to try ICA on financial data. There are many situations in that application domain in
which parallel time series are available, such as currency exchange rates or daily returns of stocks, that may have
some common underlying factors. ICA might reveal some driving mechanisms that otherwise remain hidden. In
a recent study of a stock portfolio (Back and Weigend, 1997),it was found that ICA is a complementary tool to
PCA, allowing the underlying structure of the data to be morereadily observed.

In (Kiviluoto and Oja, 1998), we applied ICA on a different problem: the cashflow of several stores belonging
to the same retail chain, trying to find the fundamental factors common to all stores that affect the cashflow data.
Thus, the cashflow effect of the factors specific to any particular store, i.e., the effect of the actions taken at the
individual stores and in its local environment could be analyzed.

The assumption of having some underlying independent components in this specific application may not be
unrealistic. For example, factors like seasonal variations due to holidays and annual variations, and factors having
a sudden effect on the purchasing power of the customers likeprize changes of various commodities, can be
expected to have an effect on all the retail stores, and such factors can be assumed to be roughly independent of
each other. Yet, depending on the policy and skills of the individual manager like e.g. advertising efforts, the effect
of the factors on the cash flow of specific retail outlets are slightly different. By ICA, it is possible to isolate both
the underlying factors and the effect weights, thus also making it possible to group the stores on the basis of their
managerial policies using only the cash flow time series data.
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The data consisted of the weekly cash flow in 40 stores that belong to the same retail chain; the cash flow
measurements cover 140 weeks. Some examples of the originaldataxi(t) are shown in Fig. 13.

The prewhitening was performed so that the original signal vectors were projected to the subspace spanned
by their first five principal components and the variances were normalized to 1. Thus the dimension of the signal
space was decreased from 40 to 5. Using the FastICA algorithm, four IC’s si(t), i = 1, ...,5 were estimated. As
depicted in Fig. 14, the FastICA algorithm has found severalclearly different fundamental factors hidden in the
original data.

The factors have clearly different interpretations. The upmost two factors follow the sudden changes that are
caused by holidays etc.; the most prominent example is the Christmas time. The factor on the bottom row, on the
other hand, reflects the slower seasonal variation, with theeffect of the summer holidays clearly visible. The factor
on the third row could represent a still slower variation, something resembling a trend. The last factor, on the fourth
row, is different from the others; it might be that this factor follows mostly the relative competitive position of the
retail chain with respect to its competitors, but other interpretations are also possible.

More details on the experiments and their interpretation can be found in (Kiviluoto and Oja, 1998).

7.3 Reducing Noise in Natural Images

The third example deals with finding ICA filters for natural images and, based on the ICA decomposition, removing
noise from images corrupted with additive Gaussian noise.

A set of digitized natural images were used. Denote the vector of pixel gray levels in an image window by
x. Note that, contrary to the other two applications in the previous sections, we are not this time considering
multivalued time series or images changing with time; instead the elements ofx are indexed by the location in the
image window or patch. The sample windows were taken at random locations. The 2-D structure of the windows
is of no significance here: row by row scanning was used to turna square image window into a vector of pixel
values. The independent components of such image windows are represented in Fig. 4. Each window in this Figure
corresponds to one of the columnsai of the mixing matrixA. Thus an observed image window is a superposition
of these windows as in (5), with independent coefficients (Bell and Sejnowski, 1997; Olshausen and Field, 1996).

Now, suppose a noisy image model holds:
z = x+n (49)

wheren is uncorrelated noise, with elements indexed in the image window in the same way asx, andz is the
measured image window corrupted with noise. Let us further assume thatn is Gaussian andx is non-Gaussian.
There are many ways to clean the noise; one example is to make atransformation to spatial frequency space by
DFT, do low-pass filtering, and return to the image space by IDFT (Gonzales and Wintz, 1987). This is not very
efficient, however. A better method is the recently introduced Wavelet Shrinkage method (Donoho et al., 1995) in
which a transform based on wavelets is used, or methods basedon median filtering (Gonzales and Wintz, 1987).
None of these methods is explicitly taking advantage of the image statistics, however.

We have recently introduced another, statistically principled method called Sparse Code Shrinkage (Hyvärinen,
1999d). It is very closely related to independent componentanalysis. Briefly, if we model the density ofx by ICA,
and assumen Gaussian, then the Maximum Likelihood (ML) solution forx given the measurementz can be
developed in the signal model (49).

The ML solution can be simply computed, albeit approximately, by using a decomposition that is an orthogo-
nalized version of ICA. The transform is given by

Wz = Wx +Wn = s+Wn, (50)

whereW is here an orthogonal matrix that is the best orthognal approximation of the inverse of the ICA mixing
matrix. The noise termWn is still Gaussian and white. With a suitably chosen orthogonal transformW, however,
the density ofWx = s becomes highly non-Gaussian, e.g., super-Gaussian with a high positive kurtosis. This
depends of course on the originalx signals, as we are assuming in fact that there exists a modelx = WTs for
the signal, such that the “source signals” or elements ofs have a positive kurtotic density, in which case the ICA
transform gives highly supergaussian components. This seems to hold at least for image windows of natural scenes
(Mallat, 1989).
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It was shown in (Hyvärinen, 1999d) that, assuming a Laplacian density forsi , the ML solution forsi is given
by a “shrinkage function” ˆsi = g([Wz]i), or in vector form,̂s= g(Wz). Functiong(.) has a characteristic shape: it
is zero close to the origin and then linear after a cutting value depending on the parameters of the Laplacian density
and the Gaussian noise density. Assuming other forms for thedensities, other optimal shrinkage functions can be
derived (Hyvärinen, 1999d).

In the Sparse Code Shrinkage method, the shrinkage operation is performed in the rotated space, after which
the estimate for the signal in the original space is given by rotating back:

x̂ = WT ŝ= WTg(Wz). (51)

Thus we get the Maximum Likelihood estimate for the image window x in which much of the noise has been
removed.

The rotation operatorW is such that the sparsity of the componentss= Wx is maximized. This operator can
be learned with a modification of the FastICA algorithm; see (Hyvärinen, 1999d) for details.

A noise cleaning result is shown in Fig. 15. A noiseless imageand a noisy version, in which the noise level is
50 % of the signal level, are shown. The results of the Sparse Code Shrinkage method and classic wiener filtering
are given, indicating that Sparse Code Shrinkage may be a promising approach. The noise is reduced without
blurring edges or other sharp features as much as in wiener filtering. This is largely due to the strongly nonlinear
nature of the shrinkage operator, that is optimally adaptedto the inherent statistics of natural images.

7.4 Telecommunications

Finally, we mention another emerging application area of great potential: telecommunications. An example of
a real-world communications application where blind separation techniques are useful is the separation of the
user’s own signal from the interfering other users’ signalsin CDMA (Code-Division Multiple Access) mobile
communications (Ristaniemi and Joutsensalo, 1999). This problem is semi-blind in the sense that certain additional
prior information is available on the CDMA data model. But the number of parameters to be estimated is often so
high that suitable blind source separation techniques taking into account the available prior knowledge provide a
clear performance improvement over more traditional estimation techniques (Ristaniemi and Joutsensalo, 1999).

8 Conclusion

ICA is a very general-purpose statistical technique in which observed random data are linearly transformed into
components that are maximally independent from each other,and simultaneously have “interesting” distributions.
ICA can be formulated as the estimation of a latent variable model. The intuitive notion of maximum nongaus-
sianity can be used to derive different objective functionswhose optimization enables the estimation of the ICA
model. Alternatively, one may use more classical notions like maximum likelihood estimation or minimization of
mutual information to estimate ICA; somewhat surprisingly, these approaches are (approximatively) equivalent. A
computationally very efficient method performing the actual estimation is given by the FastICA algorithm. Appli-
cations of ICA can be found in many different areas such as audio processing, biomedical signal processing, image
processing, telecommunications, and econometrics.
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Figure 1: The original signals.
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Figure 2: The observed mixtures of the source signals in Fig.1.
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Figure 3: The estimates of the original source signals, estimated using only the observed signals in Fig. 2. The
original signals were very accurately estimated, up to multiplicative signs.
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Figure 4: Basis functions in ICA of natural images. The inputwindow size was 16× 16 pixels. These basis
functions can be considered as the independent features of images.
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Figure 5: The joint distribution of the independent componentss1 ands2 with uniform distributions. Horizontal
axis: s1, vertical axis:s2.

Figure 6: The joint distribution of the observed mixturesx1 andx2. Horizontal axis:x1, vertical axis:x2.
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Figure 7: The multivariate distribution of two independentgaussian variables.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: The density function of the Laplace distribution,which is a typical supergaussian distribution. For
comparison, the gaussian density is given by a dashed line. Both densities are normalized to unit variance.
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Figure 9: An illustration of projection pursuit and the “interestingness” of nongaussian projections. The data in
this figure is clearly divided into two clusters. However, the principal component, i.e. the direction of maximum
variance, would be vertical, providing no separation between the clusters. In contrast, the strongly nongaussian
projection pursuit direction is horizontal, providing optimal separation of the clusters.

Figure 10: The joint distribution of the whitened mixtures.
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Figure 11: (From Vigário et al, 1998).Samples of MEG signals, showing artifacts produced by blinking, saccades,
biting and cardiac cycle. For each of the 6 positions shown, the two orthogonal directions of the sensors are
plotted.
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Figure 12: (From Vigário et al, 1998).Nine independent components found from the MEG data. For each compo-
nent the left, back and right views of the field patterns generated by these components are shown — full line stands
for magnetic flux coming out from the head, and dotted line theflux inwards.
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Figure 13: (from Kiviluoto and Oja, 1998).Five samples of the original cashflow time series (mean removed,
normalized to unit standard deviation). Horizontal axis: time in weeks.
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Figure 14: (from Kiviluoto and Oja, 1998).Four independent components or fundamental factors found from the
cashflow data.
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Figure 15: (from Hyvärinen, 1999d).An experiment in denoising. Upper left: original image. Upper right:
original image corrupted with noise; the noise level is 50 %.Lower left: the recovered image after applying
sparse code shrinkage. Lower right: for comparison, a wiener filtered image.
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