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Primates are remarkably good at recognizing objects. The le vel
of performance of their visual system and its robustness to i mage
degradations still surpasses the best computer vision syst ems
despite decades of engineering effort. In particular, the h igh accu-
racy of primates in ultra-rapid object categorization and r apid se-
rial visual processing is remarkable. Given the number of pr ocess-
ing stages involved and typical neural latencies, such rapi d visual
processing is likely to be mostly feedforward. Here we show t hat
a specific implementation of a class of feedforward theories of ob-
ject recognition (that extend the Hubel & Wiesel simple-to- complex
cell hierarchy and account for many anatomical and physiolo gical
constraints) can predict the level and the pattern of perfor mance
achieved by humans on a rapid masked animal vs. non-animal
categorization task.

object recognition, ventral stream, visual cortex, natural scenes, rapid categoriza-

tion, feedforward architecture, features of intermediate complexity, computational

neuroscience

Object recognition in cortex is mediated by the ventral visual path-
way running from V1 [1] through extrastriate visual areas V2

and V4 to IT [2, 3, 4], and then to PFC which is involved in linking
perception to memory and action. Over the last decade, a number
of physiological studies in non-human primates have established sev-
eral basic facts about the cortical mechanisms of recognition. The
accumulated evidence points to several key features of the ventral
pathway. From V1 to IT, there is an increase in invariance to position
and scale [5, 1, 2, 6, 4] and, in parallel, an increase in the size of
the receptive fields [2, 4] as well as in the complexity of the optimal
stimuli for the neurons [2, 7, 3]. Finally plasticity and learning are
probably present at all stages, and certainly at the level ofIT [6] and
PFC.

However, an important aspect of the visual architecture,i.e., the
role of the anatomical back-projections abundantly present between
almost all of the areas in visual cortex, remains a matter of debate.
The hypothesis that the basic processing of information is feedforward
is supported most directly by the short times required for a selective
response to appear in IT cells [8]. Very recent data [9] show that
the activity of small neuronal populations in monkey IT, over very
short time intervals (as small as 12.5 ms) and only about 100 ms after
stimulus onset, contains surprisingly accurate and robustinformation
supporting a variety of recognition tasks. While this does not rule out
local feedback loops within an area, it does suggest that a core hierar-
chical feedforward architecture may be a reasonable starting point for
a theory of visual cortex, aiming to explainimmediate recognition,
the initial phase of recognition before eye movements and high-level
processes can play a role [10, 11, 12, 13].

One of the first feedforward models, Fukushima’s Neocogni-
tron [14], followed the basic Hubel & Wiesel proposal [1] forbuilding
an increasingly complex and invariant object representation in a hi-

erarchy of stages by progressively integrating convergentinputs from
lower levels. Building upon several existing neurobiological mod-
els [15, 16, 5, 17, 18, 19, 20], conceptual proposals [1, 2, 21, 22] and
computer vision systems [14, 23], we have been developing [5, 24, 25]
a similar computational theory (see Fig. 1) that attempts toquantita-
tively account for a host of recent anatomical and physiological data.

The model is a simple and direct extension of the Hubel & Wiesel
simple-to-complex cell hierarchy: it takes as an input a gray-value im-
age (256×256 pixels∼ 7o ×7o of visual angle) that is first analyzed
by a multi-dimensional array of simpleS1 units which, like cortical
simple cells, respond best to oriented bars and edges.S1 units are
modeled as half-rectified filters consisting of aligned and alternating
on andoff subregions, which share a common axis of elongation
that defines the cell preferred orientation (seeSI for details).S1 units
come in four orientations and several different scales (seeFig. SI 6)
and densely cover the input image. The nextC1 level corresponds to
striate complex cells [1]. Each of the complexC1 units receives the
outputs of a group of simpleS1 units with the same preferred orienta-
tion (and two opposite phases) but at slightly different positions and
sizes (or peak frequencies). The result of the pooling over positions
and sizes is thatC1 units become insensitive to the location and scale
of the stimulus within their receptive fields, which is a hallmark of
cortical complex cells [1]. The parameters of theS1 andC1 units
(see TableSI 1) were adjusted so as to match as closely as possible
the tuning properties of V1 parafoveal simple and complex cells (RF
size, peak frequency, frequency, and orientation bandwidth, see [26]
for details).

Feedforward theories of visual processing, like the model de-
scribed here, consist in extending these two classes ofsimpleand
complexcells to extrastriate areas. By alternating betweenS layers
of simple units andC layers of complex units, the model achieves a
difficult trade-off between selectivity and invariance: Along the hier-
archy, at eachS stage, simple units become tuned to features of in-
creasing complexity (e.g.,from single oriented bars, to combinations
of oriented bars to form corners and features of intermediate com-
plexities) by combining afferents (C units) with different selectivities
(e.g.,units tuned to edges at different orientations). For instance, at the
S2 level (respectivelyS3), units pool the activities of retinotopically
organized afferentC1 units (respectivelyC2 units) with different ori-
entations (different feature-tuning) thus increasing thecomplexity of
the representation: from single bars to combinations of oriented bars
forming contours or boundary-conformations. Conversely,at eachC
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stage, complex units become increasingly invariant to 2D transforma-
tions (position and scale) by combining afferents (S units) with the
same selectivity (e.g.,a vertical bar) but slightly different positions
and scales.

The present theory signficantly extends an earlier model [5]. It
follows the same general architecture and computations. The simple
S units perform a bell-shapetuningoperation over their inputs. That
is, the responsey of a simple unit, receiving the pattern of synaptic

inputs
“

x1, . . . , xnSk

”

from the previous layer is given by:

y = exp−
1

2σ2

nSk
X

j=1

(wj − xj)
2, [1]

where σ defines the sharpness of thetuning around the pre-
ferred stimulus of the unit corresponding to the weight vector w =
(w1, . . . wnSk

). That is, the response of the unit is maximal (y = 1)
when the current pattern of inputx matches exactly the synaptic
weight vectorw and decreases with a bell-shaped tuning profile as
the pattern of input becomes more dissimilar. Conversely, the pooling
operation at the complexC level is amax operation. That is, the re-
sponsey of a complex unit corresponds to the response of the strongest

of its afferents
“

x1, . . . , xnCk

”

from the previousSk layer:

y = max
j=1... nCk

xj . [2 ]

Details about these the two key operations can be found in theSI (see
also [25]).

This class of models seems to be qualitatively and quantitatively
consistent with (and in some cases actually predicts, see [25]) several
properties of subpopulations of cells in V1, V4, IT, and PFC [27] as
well as fMRI and psychophysical data. For instance, the model pre-
dicts [25], at theC1 andC2 levels respectively, the max-like behavior
of a subclass of complex cells in V1 [28] and V4 [29]. It also shows
good agreement [25] with other data in V4 [30] about the response
of neurons to combinations of simple two-bar stimuli (within the re-
ceptive field of theS2 units) and some of theC2 units in the model
show a tuning for boundary conformations which is consistent with
recordings from V4 [31] (see also (Cadieu, Kouh, Pasupathy,Con-
nor et al, in prep). Read-out fromC2b units in the model described
here predicted [25] recent read-out experiments in IT [9], showing
very similar selectivity and invariance for the same set of stimuli. In
addition, plausible biophysical circuits may implement the two key
operations [5] assumed by the theory within the time constraints of
the experimental data [8].

Because this feedforward model appears to agree with physiolog-
ical data while performing well in the recognition of natural images, it
is natural to ask how well it may predict human performance incom-
plex object recognition tasks. Of course as a feedforward model of
the ventral stream pathway, the architecture of Fig. 1 cannot account
for our everyday vision which involves eye movements and top-down
effects, which are mediated by higher brain centers and the exten-
sive anatomical back-projections found throughout visualcortex and
not implemented in the present feedforward model. Thus a natural
paradigm for comparing the performance of human observers in an
object recognition task to that of a feedforward model of visual pro-
cessing is ultra-rapid categorization, a task for which back-projections
are likely to be inactive [32, 33]. A well-established experiment is an
animal vs. non-animal recognition task [32, 34, 35, 36, 33].

Results
Animals in natural scenes constitute a challenging class ofstimuli
due to large variations in shape, pose, size, texture, and position in
the scene (seeSI for the performance of several benchmark systems).

To vary the difficulty of the task, we used four sets of balanced image
categories (150 animals and 150 matching distractors, seeMaterials
and Methods), each corresponding to a particular viewing-distance
from the camera, from an animal head to a small animal or groups of
animals in cluttered natural backgrounds (i.e., “head”, “close-body”,
“medium-body”, and “far-body” categories, see Fig. 2a, andMateri-
als and Methods).

When testing human observers, we used a backward masking pro-
tocol (1/f noise image with a duration of 80 ms, see Fig. 2b) with a
long50 ms stimulus onset asynchrony (50 ms SOA corresponding to a
20 ms stimulus presentation followed by a 30 ms inter-stimulus inter-
val). It was found [33] that increasing the SOA on a similar animal vs.
non-animal categorization task above 44 ms only has a minor effect
on performance (accuracy scores for longer SOA conditions were not
significantly different). At the same time we expect the maskto block
significant top-down effects through the back-projections(see later
andSI). In the present version of the model, processing by the units
(the nodes of the graph in Fig. 1) is approximated as essentially instan-
taneous (see however possible microcircuits involved in thetuning

andmax operation in [25]). All the processing time would be taken
by synaptic latencies and conduction delays (seeSI). The model was
compared to human observers in three different experiments.

A comparison between the performance of human observers
(n = 24, 50 ms SOA) and the feedforward model in the animal
classification task is shown in Fig. 3a. Performance is measured
by thed′, a monotonic function of the performance of the observers
which combines both the hit and false-alarm rates of each observer
into one standardized score (seeMaterials and Methods; other accu-
racy measures such as error rates or hits gave similar results, seeSI).
The task-specific circuits of the model were trained for the animal vs.
non-animal categorization task in a supervised way using a random
split procedure (seeMaterials and Methods) on the entire database
of stimuli (i.e., in a given run, half the images were selected at ran-
dom for training and the other half were used for testing the model).
Human observers and the model behave similarly: across all four an-
imal categories, their levels of performance do not show significant
differences (with overall correct 80% for human observers and 82%
for the model). It should be noted that no single model parameter
was adjusted to fit the human data (all parameters apart from the su-
pervised stage from IT to PFC were fixed before all tests by taking
into account the physiology data from V1 to IT). The accuracyof the
human observers is well within the range of data previously obtained
with go/no-go tasks on similar tasks [32, 35, 33].

Most importantly both the model and human observers tend to
produce similar responses (both correct and incorrect, seeFig. 3).
We measured quantitatively the agreement between human observers
and the model on individual images. For each image in the database
we computed the percentage of observers (black number aboveeach
thumbnail) who classified it as an animal (irrespective of whether the
image contains an animal or not). For the model we computed the
percentage of times the model (green number) classified eachim-
age as an animal for each of the random runs (during each run, the
model is trained and tested on a different set of images and therefore,
across several runs, the same test image may be classified differently
by the model). A percentage of 100% (50%) means that all (half)
the observers (either human observers or random runs of the model)
classified this image as an animal. The overall image-by-image cor-
relation between the model and human observers is high (specifically
0.71, 0.84, 0.71 and 0.60 for heads, close-body, medium-body and
far-body respectively, withp valuep < 0.01). Together with the re-
sults of a “lesion study” performed on the model (see Fig.SI 1) the
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data suggest that it is the large, overall set of features from V2 to V4
and PIT that underlies such a human-like performance in thistask.

To further test the model we measured the effect of image rota-
tion (90o and180o) on performance. Recent behavioral studies [36]
(see also abstract byGuyonneau, Kirchner and Thorpe, ECVP 2005)
suggested that the animal categorization task can be performed very
well by human observers on rotated images. Can the model predict
human behavior in this situation? Fig.SI 2 shows indeed that the
model (right) and human observers (left) show a similar pattern of
performance and are similarly robust to image rotation. Therobust-
ness of the model is particularly remarkable as it was not re-trained
before being tested on the rotated images. It is likely due tothe fact
that an image patch of a rotated animal is more similar to an image
patch of an upright animal than to a non-animal.

Finally, we replicated previous psychophysical results [33] to test
the influence of the mask on visual processing with four experimen-
tal conditions,i.e., when the mask followed the target image (20 ms
presentation): a) without any delay (“immediate-mask” condition);
b) with a short inter-stimulus interval of 30 ms (50 ms SOA) asin the
previous experiments; c) with an ISI of 60 ms (80 ms SOA) or d) never
(“no-mask” condition). For all four conditions, the targetpresenta-
tion was fixed to 20 ms as before. As expected, the delay between
the stimulus and the mask onset modulates the level of performance
of the observers improving gradually from the 20 ms SOA condition
to the no-mask condition (see Fig.SI 3). The level of performance
of human observers reached a ceiling in the 80 ms SOA condition
(except when the animal was camouflaged in the scene,i.e., far-body
group). The model predicts human-level hit rate very well between
the 50 ms SOA and the 80 ms SOA conditions. For SOAs longer
than 80 ms, human observers outperform the model (the performance
for the 50 ms SOA condition, however, is only about 5% lower than
the ceiling performance in theno-maskcondition). It remains an
open question whether the slightly better performance of humans for
SOAs longer than 80 ms is due to feedback effects mediated by the
back-projections [37].

Discussion
The new model implementation used in this paper improves theorginal
model [5] in two significant ways. The major extension is a newun-
supervised learning stage of the units in intermediate stages of the
model [24, 25]. A key assumption in the new model is that the hi-
erarchy of visual areas along the ventral stream of the visual cortex,
from V1 to IT, builds a generic dictionary of shape-tuned units which
provides a rich representation for task-specific categorization circuits
in prefrontal areas. Correspondingly, learning proceeds in two inde-
pendent stages: First, during aslowdevelopmental-like unsupervised
learning stage units from V1 to IT become adapted to the statistics of
the natural environment (seeSI for details). The resulting dictionary
is generic and universal, in the sense that it can support several differ-
ent recognition tasks [25] and in particular the recognition of many
different object categories. After this initial unsupervised learning
stage, for the “mature” model to learn a categorization task(e.g.,ani-
mal vs. non-animal) only the task-specific circuits at the top level in
the model, possibly corresponding to categorization unitsin PFC [27],
have to be trained from a small set of labeled examples and in atask
specific manner (seeMaterials and Methods).

Additionally the new model is closer to the anatomy and the phys-
iology of the visual cortex in terms of quantitative parameter val-
ues. For instance, the parameters (see TableSI 1) of the S1 and
C1 model units were constrained by physiology data [1, 38, 39]

so that their tuning properties would agree with those of cortical
simple and complex cells (seeSI). In addition to the main routes
through V4 to IT cortex [4] the model also accounts for the bypass
routes [40] from V2 to PIT and V4 to AIT (see Fig. 1; unlike the
original model [5]). A more detailed description of the model can
be found inSI and a software implementation is accessible from
our supplementary online material at http://cbcl.mit.edu/software-
datasets/serre/SerreOlivaPoggioPNAS07/index.htm.

Not only does this class of feedforward models seem to be able
to duplicate the tuning properties of at least some corticalcells when
probed with artificial stimuli, but, it can also handle the recognition
of objects in the real-world [41, 42] where objects may undergo dras-
tic changes in appearance (e.g., clutter, shape, illumination). Key
to the recognition performance of the model is the large number of
tuned units across its hierarchical architecture which is adirect conse-
quence of the learning from natural images and represent a redundant
dictionary of fragment-like features [17, 43, 12] that spana range of
selectivities and invariances. As a result of this new learning stage, the
architecture of Fig. 1 contains a total of107 tuned units. In addition,
the model is remarkably robust to parameter values detailedwiring
and even exact form of the two basic operations and of the learning
rule (see [25]).

Previous physiological studies have shown that during masked
stimulus presentations, the feedforward bottom-up components of cor-
tical cells response (i.e., the early response from response onset for
a period of time lasting about the stimulus-mask) remains essentially
unaltered while the later response is interrupted (seeSIand [44, 45, 46]
for recent reviews). Several studies (seeSI) have shown that this later
response includes recurrent processing, that is a modulation through
back-projections from higher to lower areas. Based on response laten-
cies in the visual cortex (seeSI), we estimate that significant top-down
modulation should start for stimulus-mask interval around40-60 ms
(seeSI). The model indeed mimics human-level performance for the
50 msSOA condition. This suggests that, under these conditions, the
present feedforward model may provide a satisfactory description of
information processing in the ventral stream of visual cortex.

Our results indeed agree with several theories of visual process-
ing that suggest that an initial feedforward sweep driven bybottom-up
inputs builds abase representationthat relies on a basic dictionary of
generic features [11, 12, 13, 17, 43] before more complex tasks or vi-
sual routines can take place through recurrent projectionsfrom higher
areas [47, 44, 45, 21]. Additionally our results show the limit of
what a feedforward architecture can do: In agreement with the hu-
man data, the model is able to recognize objects with limitedclutter
(see also [41] for results on a large database of 101 object categories).
However when the amount of clutter present in the images increase,
the performance of the model decreases significantly. This suggests
a key role for the massive back-projections found in the visual cor-
tex [48]. Indeed, preliminary results with a simple extension of the
present model (see [49]) which requires top-down signals from higher
to lower areas to limit visual processing to a “spotlight of attention”
centered around the animal target shows a significant improvement
in the classification performance on the “far” animal condition. In
addition, back-projections may be important for visual awareness and
beyond tasks such as visual categorization for perceptual organization
and figure-ground segmentation [50, 51, 52] or curve tracing[53].

Nevertheless, our main result is that a simple extension of the feed-
forward hierarchical architecture, suggested some forty years ago by
Hubel & Wiesel and reflecting the known physiology and anatomy
of visual cortex, correlates well with humans and exhibit comparable
accuracy on a difficult (but rapid) recognition task. This provides

Footline Author PNAS Issue Date Volume Issue Number 3



computational neuroscience support to the conjecture thata task-
independent, unsupervised, developmental-like learningstage may
exist in the ventral stream to generate a large dictionary ofshape-
tuned units with various degrees of selectivity and invariance from
V1 to IT, consistently with recent data [54].

Materials and methods
Supplementarywebmaterial isalsoavailable (http://cbcl.mit.edu/software-
datasets/serre/SerreOlivaPoggioPNAS07/index.htm) andincludes, in
particular, a basic software implementation for the model,the animal /
non-animal stimulus database as well as supplementary dataincluding
a summary of different error measures for both the model and human
observers (e.g.,roc curves).
The stimulus dataset. All images were gray-value256×256 pixel
images. The stimulus database contains a total of 600 animalstimuli
(a subset of the Corel database as in [32];256 × 256 image win-
dows were cropped around the animal from the original256 × 384
pixel images with a random offset to prevent the animal from always
be presented in the center of the image) and 600 non-animal stim-
uli. Animal images were manually grouped into four categories with
150 exemplars in each, that is,head, close-body, medium-bodyand
far-body.

A set of distractors with matching mean distance from the camera
(300 from natural and 300 from artificial scenes) was selected from a
database of annotated mean depth images [55]. We selected images
with a mean distance from the camera below 1 m for head, between
5 m and 20 m for close-body, between50 m and100 m for medium-
body as well as above 100 m and panoramic views for far-body.
The database is publicly available at http://cbcl.mit.edu/software-
datasets/serre/SerreOlivaPoggioPNAS07/index.htm.
Human psychophysics. All participants (18 to 35 years of age;
n = 24 in the first experiment with a fixed 50 ms SOA;n = 14 in
the second experiment with0o, 90o and180o rotated stimuli;n = 21
in the last experiment with a variable SOAs) gave a written informed
consent. There was approximately the same number of male andfe-
male observers in each experiment and none participated in more than
one of the three experiments. Participants were seated in a dark room,
0.5 m away from a computer screen, connected to a computer (Intel
Pentium c© IV processor, 1 GB RAM, 2.4 GHz). The monitor refresh
rate was 100 Hz allowing stimuli to be displayed with a frame-duration
of 10 ms and a resolution of1024 × 768.

We used the Matlabc© (Mathworks Inc, Natick, MA) software
with the psychophysics toolbox [56, 57] to precisely time the stimu-
lus presentations. In all experiments, the image duration was20 ms.
In all experiments except the last one (see below) the mask appeared
after a fixed inter-stimulus interval (ISI) of 30 ms (corresponding to a
Stimulus Onset AsynchronySOA of 50 ms). In the last experiment,
we randomly interleaved different ISI conditions: 0 ms ISI (SOA = 20
ms), 30 ms ISI (SOA = 50 ms), 60 ms ISI (SOA = 80 ms), or infinite
(i.e.,never appeared). The mask following the picture was a (1/f) ran-
dom noise mask, generated (for each trial) by filtering random noise
through a Gaussian filter.

The stimuli were presented in the center of the screen (256×256
pixels, about7o × 7o of visual angle, gray-level images). The 1,200
image stimuli (600 animals and 600 distractors) were presented in
random order and divided into 10 blocks of 120 images each. Partici-
pants were asked to answer as fast and as accurately as possible if the
image contained an animal, by pressing ayesor nokey on a computer
keyboard. They were randomly asked to use their left or righthand
for yes vs. no answers. Each experiment took approximately 30 min
to perform.

Categorization by the model. To train the PFC classification unit
in the model, we used a random splits procedure, which has been
shown to provide a good estimate of the expected error of a classi-
fier [58]. The procedure is as follow:

1) Split the set of 1,200 (animal and non-animal) images into two
halves; denote one halfTrainingand the otherTest.

2) Imprint S4 units with specific examples of animal and non-
animal images from the training set of images (25% selected at ran-
dom). Like units in lower stages become tuned to patches of natural
images (seeSI),S4 units become tuned to views of the target object by
storing in their synaptic weights the pattern of activity oftheir affer-
ents during a presentation of a particular exemplar. This is, consistent
with a large body of data that suggests that the selectivity of neurons
in IT depends on visual experience (see [25] for a review).

3) Train a PFC classification unit on the labeledTraining set of
images. The responsey of a classificationunit with input weights

c =
“

c1, . . . , cKS4

”

, when presented with an input patternx =

(x1, . . . xKS4
) from the previous layer (S4 unit j, denotedxj , is

tuned to thejth training example), is given by:
y =

X

j

cjxj . [3]

The unit responsey ∈ R is further binarized (y ≶ 0) to obtain a
classification label{−1, 1}. This supervised learning stage involves
adjusting the synaptic weightsc so as to minimize the overall classi-
fication errorE on the training set.1 In this paper we used one of the
simplest types of linear classifier by computing the least-square fit so-
lution of the regularized classification error evaluated onthe training
set: 23

E =
l

X

i=1

||yi − ŷi||2 + λ||c||2. [4 ]

whereyi corresponds to the classification unit response for theith

training example,̂yi is the true label of theith training example and
λ is a fixed constant. To solve Eq. 4 we used the non-biological
Matlab c© (The MathWorks, Inc) left division operation for matri-
ces but we obtained similar results with a more biologicallyplausible
stochastic gradient learning approach using weight perturbations mod-
ified from [59]. i.e.,(xi, yi) pairs, wherexi denotes theith image in
the training set andyi its associated label (animal or non-animal).

4) Evaluatethe performance of the classifier on theTestset.
We repeated the overall proceduren = 20 times and computed the
average model performance. Note that the error bars for the model in
Fig. 3 and 4 in the main manuscript correspond to the standarderrors
computed over thesen = 20 random runs.
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1The full training set is used to adjust the synaptic weights of the classification unit.
2Other classifiers could be used (a linear SVM gave very similar results). A recent study [9]
demonstrated that a linear classifier can indeed read-outwith high accuracy and over extremely
short times (a single bin as short as 12.5 millisecond) object identity, object category and other
information (such as position and size of the object) from the activity of about 100 neurons in
IT.
3A single classifier was trained on all four animal and non-animal categories together.
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Fig. 1. Sketch of the model.Tentative mapping between the ventral stream in the primate visual system (left) and the functional primitives of the feedforward model
(right). The model accounts for a set of basic facts about the cortical mechanisms of recognition that have been established over the last decades: From V1 to IT, there
is an increase in invariance to position and scale [1, 2, 4, 5, 6] and, in parallel, an increase in the size of the receptive fields [2, 4] as well as in the complexity of the
optimal stimuli for the neurons [2, 3, 7]. Finally adult plasticity and learning are probably present at all stages, and certainly at the level of IT [6] and PFC. The theory
assumes that one of the main functions of the ventral stream, just a part of visual cortex, is to achieve a trade-off between selectivity and invariance within a hierarchical
architecture. As in [5], stages of simple(S) units with Gaussian tuning (plain circles and arrows), are loosely interleaved with layers of complex(C) units (dotted circles
and arrows), which perform a max operation on their inputs and provide invariance to position and scale (pooling over scales is not shown in the figure). The tuning
of the S2, S2b and S3 units (corresponding to V2, V4 and PIT) is determined here by a prior developmental-like unsupervised learning stage (see SI). Learning of the
tuning of the S4 units and of the synaptic weights from S4 to the top classification units is the only task-dependent, supervised learning stage. The main route to IT
is denoted with black arrows while the bypass route [40] is denoted with blue arrows (see SI). The total number of units in the model simulated in this paper is in the
order of 10 million. Colors indicate the correspondence between model layers and cortical areas. The table on the right provides a summary of the main properties of
the units at the different levels of the model. Note that the model is a simplification and only accounts for the ventral stream of visual cortex. Of course other cortical
areas (e.g.,in the dorsal stream) as well as non-cortical structures (e.g.,basal ganglia) are likely to play a role in the process of object recognition. The diagram on the
left is modified from [60] (with permission by the author) which represents a juxtaposition of the diagrams of [61, 48].
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Fig. 2. Animal vs. non-animal categorization task.a) The four (balanced) classes of stimuli. Animal images (a subset of the image database used in [32]) were
manually arranged into four groups (150 images each) based on the distance of the animal from the camera: head (close-up), close-body (animal body occupying the
whole image), medium-body (animal in scene context) and far-body (small animal or groups of animals). Each of the four classes corresponds to different animal sizes
and, probably through the different amount of clutter relative to the object size, modulates the task difficulty. A set of matching distractors (300 each from natural and
artificial scenes (see Materials and Methods) was selected, so as to prevent human observers and the computational model from relying on low-level cues (see SI).
b) Schematic of the task. A stimulus (gray-level image) is flashed for 20 ms, followed by a blank screen for 30 ms (i.e., SOA of 50 ms) and followed by a mask for 80
ms. Subjects ended the trial with a yes/no answer by pressing one of two keys.
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pattern of performance (measured with d′ measure, see SI). Error bars indicate the standard errors for the model (computed over n = 20 random runs) and for
human observers (computed over n = 24 observers). Examples of classifications by the model and human observers. Common false alarms (b) and misses
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