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Primates are remarkably good at recognizing objects. The le  vel erarchy of stages by progressively integrating converiggtts from

of performance of their visual system and its robustness to i mage  |ower levels. Building upon several existing neurobiottzgimod-
degradations still surpasses the best computer vision syst ems els [15, 16, 5, 17, 18, 19, 20], conceptual proposals [1, 222]land

despite decades of engineering effort. In particular, the h igh accu- L .

racypof primates in uItrga-rapid ?)bject cate%orization and r gapid se- computer vision systems [14, 23], we have been developirgi{35]

rial visual processingis remarkable. Giventhe numberofpr ~ ocess- @ similar computational theory (see Fig. 1) that attemptautantita-

ing stages involved and typical neural latencies, such rapi d visual tively account for a host of recent anatomical and physicklglata.
processing is likely to be mostly feedforward. Here we showt  hat The model is a simple and direct extension of the Hubel & Wiese
a specific implementation of a class of feedforward theories of ob-

ject re_cognition (that extend the Hubel &Wie'_sel simple-to-_ comp_lex Slmple-to-éomp!exlcell hl)erarghyf: '_t takles asl an k']”pt_‘t ?{gmue :m— d
cell hierarchy and account for many anatomical and physiolo  gical g€ @56 X 256 pixels~ 7% x 7° of visual angle) that is first analyze
constraints) can predict the level and the pattern of perfor mance by a multi-dimensional array of simpl€; units which, like cortical
achieved by humans on a rapid masked animal vs. non-animal simple cells, respond best to oriented bars and edgegsunits are
categorization task. modeled as half-rectified filters consisting of aligned alteraating
ON and orF subregions, which share a common axis of elongation
object recognition, ventral stream, visual cortex, natural scenes, rapid categoriza- that defines the cell preferred orientation (S¢for details). S; units
tion, feedforward architecture, features of intermediate complexity, computational come in four orientations and several different scales FsgeS| 6)
neuroscience and densely cover the input image. The n€xtlevel corresponds to
) o . ) striate complex cells [1]. Each of the compl€x units receives the

bjectrecognitionin cortexis mediated by the ventral viadh-  o,trts of a group of simplé; units with the same preferred orienta-

way running from V1 [1] through extrastriate visual areas V2ijon (and two opposite phases) but at slightly differentigpmss and
and V4 1o IT [2, 3, 4], and then to PFC which is involved in lingi  gjze5 (or peak frequencies). The result of the pooling ousitipns
perception to memory and action. Over the last decade, a @umby g sizes is that units become insensitive to the location and scale
of physiological studies in non-human primates have eistaddl sev- ot the stimulus within their receptive fields, which is a hairk of
eral basic facts about the cortical mechanisms of recagnitithe  qical complex cells [1]. The parameters of the and Cy units
accumulated evidence points to several key features oféh&al  (see Taplesi 1) were adjusted so as to match as closely as possible
pathway. From V1 to IT, there |_s an increase |r_1 |nvar|an(_:a)mtpnn the tuning properties of V1 parafoveal simple and compldis ¢RF
and scale [5, 1, 2, 6, 4] and, in parallel, an increase in e 8f ;o neak frequency, frequency, and orientation bandiwiste [26]
the receptive fields [2, 4] as well as in the complexity of tipimal ¢4, details).

stimuli for the neurons [2, 7, 3]. Finally plasticity and taang are Feedforward theories of visual processing, like the model d
probably present at all stages, and certainly at the levll (] and  gcriped here, consist in extending these two classesingple and
PFC. ) . o complexcells to extrastriate areas. By alternating betwsdayers
However, an important aspect of the visual architectues,the  of simple units and” layers of complex units, the model achieves a
role of the anatomical back-projections abundantly prebetween gjgsicyIt trade-off between selectivity and invariance:oAb the hier-
almost all of the areas in visual cortex, remains a matterede.  5rchy, at eacts stage, simple units become tuned to features of in-
The hypothesis that the basic processing of informaticegeforward  creasing complexitye(g.,from single oriented bars, to combinations
is supported most directly by the short times required feeladtive 4 griented bars to form corners and features of intermediam-
response to appear in IT cells [8]. \{ery recent data [9] shioat t plexities) by combining afferent€{units) with different selectivities
the activity of small neuronal populations in monkey IT, DVery (e g units tuned to edges at different orientations). For irctaat the
short time intervals (as small as 12.5 ms) and only about 198fter g, |eve| (respectivelyss), units pool the activities of retinotopically
stimulus onset, contains surprisingly accurate and rabimimation  organized afferent units (respectively’s units) with different ori-
supporting a variety of recognition tasks. While this doesrale out  entations (different feature-tuning) thus increasingabmplexity of
local feedback loops within an area, it does suggest thateaterar- e representation: from single bars to combinations @foeid bars

chical feedforward architecture may be a reasonable sggptint for forming contours or boundary-conformations. Conversagach”
a theory of visual cortex, aiming to explaimmediate recognition

the initial phase of recognition before eye movements agh-tével
processes can play arole [10, 11, 12, 13]. e —
One of the first feedforward models, Fukushima’s Neocogni-conflict of interest footnote placeholder
tron [14], followed the basic Hubel & Wiesel proposal [1] fII.I'I|dIng Abbreviations: V1, primary visual cortex; V2, visual area Il; V4, visual area IV; PIT, posterior

an increasingly Complex and invariant object represeumdti a hl- inferotemporal cortex; AlT, anterior inferotemporal cortex; PFC, prefontal cortex
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stage, complex units become increasingly invariant to aBgforma-  To vary the difficulty of the task, we used four sets of balahioeage

tions (position and scale) by combining afferentsunits) with the  categories (150 animals and 150 matching distractorsiVisgerials

same selectivityd.g.,a vertical bar) but slightly different positions and Methody each corresponding to a particular viewing-distance

and scales. from the camera, from an animal head to a small animal or grofip
The present theory signficantly extends an earlier model If5] animals in cluttered natural backgrounile.(“head”, “close-body”,

follows the same general architecture and computationse.sithple  “medium-body”, and “far-body” categories, see Fig. 2a, Muateri-

S units perform a bell-shapeuNING operation over theirinputs. That als and Methods

is, the responsg of a simple unit, receiving the pattern of synaptic When testing human observers, we used a backward masking pro

inputs (m’ o xnsk) from the previous layer is given by: tocol (1/ f noise image with a duration of 80 ms, see Fig. 2b) with a
ng, long50 ms stimulus onset asynchrony (50 ms SOA corresponding to a
y = exp _LQ Z(wﬂ' — ;)% [1] 20 ms stimulus presentation followed by a 30 ms inter-stirsirter-
20 = val). Itwas found [33] that increasing the SOA on a similanaat vs.

where o defines the sharpness of thesNinG around the pre- non-animal categorization task above 44 ms only has_a_t mifexte
ferred stimulus of the unit corresponding to the weight seet =  ©N performance (accuracy scores for longer SOA conditicerewot
(wi, ... Wns, ). That is, the response of the unit is maximak¢ 1) s!gn!f!cantly different). Atthe same time we expect_the_mﬂ:stbdock
when the current pattern of input matches exactly the synaptic Significant top-down effects through the back-projecti¢see later
weight vectorw and decreases with a bell-shaped tuning profile a&ndSD. In the present version of the model, processing by thesunit

the pattern of input becomes more dissimilar. Converseypboling ~ (thenodes of the graphinFig. 1) is approximated as esslgmistan-
operation at the complex level is avax operation. That is, the re- taneous (see however possible microcircuits involvedérthNiNG

sponse of a complex unit corresponds to the response of the stronge&ndMAX operation in [25]). All the processing time would be taken

of its afferents(a:l, ) T ) from the previouss), layer: by synaptic latencies and condL_Jctlon delgys GSkeThe model was
k compared to human observers in three different experiments
y = _max ;. [2] A comparison between the performance of human observers
Details about these the two key operations can be found iSlifeee ~ (# = 24, 50 ms SOA) and the feedforward model in the animal
also [25]). classification task is shown in Fig. 3a. Performance is nredsu

This class of models seems to be qualitatively and quaintitat by thed’, a monotonic function of the performance of the observers
consistent with (and in some cases actually predicts, $pgeveral which combines both the hit and false-alarm rates of eackrobs
properties of subpopulations of cells in V1, V4, IT, and PRC][as into one standardized score (ddaterials and Methodsother accu-
well as fMRI and psychophysical data. For instance, the fpee ~ 'acy measures such as error rates or hits gave similarsesea#SI).
dicts [25], at the”; andC» levels respectively, the max-like behavior The task-specific circuits of the model were trained for thienal vs.
of a subclass of complex cells in V1 [28] and V4 [29]. It alsmss ~ Non-animal categorization task in a supervised way usirgndam
good agreement [25] with other data in V4 [30] about the raspo split procedure (seMaterials and Methodson the entire database
of neurons to combinations of simple two-bar stimuli (wittihe re- of stimuli (i.e., in a given run, half the images were selected at ran-
ceptive field of theS, units) and some of thé’ units in the model dom for training and the other half were used for testing tioelef).
show a tuning for boundary conformations which is conststeth Human observers and the model behave similarly: acrossualkin-
recordings from V4 [31] (see also (Cadieu, Kouh, Pasupatioy- imal categories, their levels of performance do not showifi@ant
nor et al, in prep). Read-out frofly, units in the model described differences (with overall correct 80% for human observers 82%
here predicted [25] recent read-out experiments in T [Bhveng for the model). It should be noted that no single model patame
very similar selectivity and invariance for the same settiofisli. In ~ Was adjusted to fit the human data (all parameters apart fiersut-
addition, plausible biophysical circuits may implemerg tivo key ~ Pervised stage from IT to PFC were fixed before all tests bingak
operations [5] assumed by the theory within the time comgsaf  into account the physiology data from V1 to IT). The accurafthe

the experimental data [8]. human observers is well within the range of data previoubtpioed
Because this feedforward model appears to agree with ghgsio With go/no-go tasks on similar tasks [32, 35, 33].
ical data while performing well in the recognition of natLiraages, it Most importantly both the model and human observers tend to

is natural to ask how well it may predict human performanceoim- ~ Produce similar responses (both correct and incorrectfgge 3).
plex object recognition tasks. Of course as a feedforwardahof ~ We measured quantitatively the agreement between humanvels
the ventral stream pathway, the architecture of Fig. 1 ceaccount and the model on individual images. For each image in thebdata
for our everyday vision which involves eye movements anedopn ~ We computed the percentage of observers (black number aiaave
effects, which are mediated by higher brain centers and xtene thumbnail) who classified it as an animal (irrespective oéthler the
sive anatomical back-projections found throughout visgalex and ~ image contains an animal or not). For the model we computed th
not implemented in the present feedforward model. Thus aralat Percentage of times the model (green number) classified ieach
paradigm for comparing the performance of human observeasni ade as an animal for each of the random runs (during eachhan, t
object recognition task to that of a feedforward model ofisisoro- ~ Model is trained and tested on a different set of images anefttre,
cessing is ultra-rapid categorization, a task for whictkhamjections ~ across several runs, the same test image may be classifiectuify
are likely to be inactive [32, 33]. A well-established expentisan Py the model). A percentage of 100% (50%) means that all half
animal vs. non-animal recognition task [32, 34, 35, 36, 33]. the observers (either human observers or random runs of adelijn

classified this image as an animal. The overall image-bygéreor-

Results relation between the model and human observers is highifgadly
0.71, 0.84, 0.71 and 0.60 for heads, close-body, mediurg-bod

Animals in natural scenes constitute a challenging classtiofuli  t4_pody respectively, withp valuep < 0.01). Together with the re-

due to large variations in shape, pose, size, texture, asigoin g its of a “lesion study” performed on the model (see Fy1) the
the scene (se8l for the performance of several benchmark systems).
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data suggest that it is the large, overall set of featurea W@ to V4  so that their tuning properties would agree with those oticalr
and PIT that underlies such a human-like performance irtdisis simple and complex cells (se&®). In addition to the main routes

To further test the model we measured the effect of image rotahrough V4 to IT cortex [4] the model also accounts for thedsgp
tion (90° and180°) on performance. Recent behavioral studies [36]routes [40] from V2 to PIT and V4 to AIT (see Fig. 1; unlike the
(see also abstract lyuyonneau, Kirchner and Thorpe, ECVP 2D05 original model [5]). A more detailed description of the mbdan
suggested that the animal categorization task can be petbvery be found inSl and a software implementation is accessible from
well by human observers on rotated images. Can the modeicpred our supplementary online material at http://cbcl.mit/edétware-
human behavior in this situation? Figl 2 shows indeed that the datasets/serre/SerreOlivaPoggioPNASO7/index.htm.
model (right) and human observers (left) show a similarguatbf Not only does this class of feedforward models seem to be able
performance and are similarly robust to image rotation. fimeist-  to duplicate the tuning properties of at least some cortieds when
ness of the model is particularly remarkable as it was natai@ed  probed with artificial stimuli, but, it can also handle theagnition
before being tested on the rotated images. Itis likely dubedact of objects in the real-world [41, 42] where objects may ugdatras-
that an image patch of a rotated animal is more similar to aagan tic changes in appearance.d., clutter, shape, illumination). Key
patch of an upright animal than to a non-animal. to the recognition performance of the model is the large remalh

Finally, we replicated previous psychophysical resulgj {8 test  tuned units across its hierarchical architecture whictdisext conse-
the influence of the mask on visual processing with four érpem-  quence of the learning from natural images and represeduadant
tal conditions,i.e., when the mask followed the target image (20 msdictionary of fragment-like features [17, 43, 12] that sparange of
presentation): a) without any delay (“immediate-mask”diton);  selectivities and invariances. As aresult of this new legystage, the
b) with a short inter-stimulus interval of 30 ms (50 ms SOAjrethe  architecture of Fig. 1 contains a total " tuned units. In addition,
previous experiments; c) with an ISI of 60 ms (80 ms SOA) omden  the model is remarkably robust to parameter values detailedg
(“no-mask” condition). For all four conditions, the targeesenta- and even exact form of the two basic operations and of thaitegr
tion was fixed to 20 ms as before. As expected, the delay batweeule (see [25]).
the stimulus and the mask onset modulates the level of pegioce Previous physiological studies have shown that during edhsk
of the observers improving gradually from the 20 ms SOA cmidi  stimulus presentations, the feedforward bottom-up coraptsof cor-
to the no-mask condition (see Fi&l 3). The level of performance tical cells responsé.€., the early response from response onset for
of human observers reached a ceiling in the 80 ms SOA conditioa period of time lasting about the stimulus-mask) remaissmtially
(except when the animal was camouflaged in the séengfar-body  unaltered while the later response is interrupted§aad [44, 45, 46]
group). The model predicts human-level hit rate very wetinaen  for recent reviews). Several studies (8&#have shown that this later
the 50 ms SOA and the 80 ms SOA conditions. For SOAs longeresponse includes recurrent processing, that is a moduldtiough
than 80 ms, human observers outperform the model (the peafoze  back-projections from higher to lower areas. Based on resplaten-
for the 50 ms SOA condition, however, is only about 5% loweamnth cies in the visual cortex (s&d), we estimate that significant top-down
the ceiling performance in theo-maskcondition). It remains an modulation should start for stimulus-mask interval arod8e60 ms
open question whether the slightly better performance ofdns for  (seeSl). The model indeed mimics human-level performance for the
SOAs longer than 80 ms is due to feedback effects mediatebeby t 50 msSO A condition. This suggests that, under these conditions, the
back-projections [37]. present feedforward model may provide a satisfactory gegmm of
information processing in the ventral stream of visualeart

Our results indeed agree with several theories of visualge®
. . ing that suggest that an initial feedforward sweep drivebdityom-up
Discussion . ; : . Sl

inputs builds dase representatiothat relies on a basic dictionary of

The new modelimplementation usedin this paperimprovesieal  generic features [11, 12, 13, 17, 43] before more complésstasvi-
model [S] in two significant ways. The major extension is a mBW g 4] routines can take place through recurrent projecfions higher
supervised learning stage of the units in intermediateestaf the  5,ea5 [47, 44, 45, 21]. Additionally our results show theitliof
model [24, 25]. A key assumption in the new model is that the hiyhat g feedforward architecture can do: In agreement withhiin
erarchy of visual areas along the ventral stream of the V@réex,  man data, the model is able to recognize objects with linitatter
from V1 to IT, builds a generic dictionary of shape-tunedsimihich (see also [41] for results on a large database of 101 objeajades).
provides arich representation for task-specific categtidm circuits  However when the amount of clutter present in the imagesass,
in prefrontal areas. Correspondingly, learning proceed#&/o inde-  he performance of the model decreases significantly. Tjgests
pendent stages: First, duringl@wdevelopmental-like unsupervised 4 key role for the massive back-projections found in the alisor-
learning stage units from V1 to IT become adapted to thessieiof oy [48]. Indeed, preliminary results with a simple extensof the
the natural environment (s& for details). The resulting dictionary present model (see [49]) which requires top-down signats figher
is generic and universal, in the sense that it can suppcgtakdiffer- 1o |ower areas to limit visual processing to a “spotlight tiéation”
ent recognition tasks [25] and in particular the recognitd many  centered around the animal target shows a significant inepnent
different object categories. After this initial unsupeed learning i the classification performance on the “far” animal coiodit In
stage, for the “mature” model to learn a categorization {ask.,ani-  aqgition, back-projections may be important for visual emess and
mal vs. non-animal) only the task-specific circuits at thelevel in - peyond tasks such as visual categorization for perceptgahization
the model, possibly corresponding to categorization umi=C [27],  gpq figure-ground segmentation [50, 51, 52] or curve traf56}
have to be trained from a small set of labeled examples andiaiska Nevertheless, our main resultis that a simple extensidredted-
specific manner (sedaterials and Methods forward hierarchical architecture, suggested some faetyryago by
~ Additionally the new model is closer to the anatomy and thesph bl & Wiesel and reflecting the known physiology and anatom
iology of the visual cortex in terms of quantitative paraemetal-  of yisual cortex, correlates well with humans and exhibinparable

ues. For instance, the parameters (see T8blg) of the 51 and  accuracy on a difficult (but rapid) recognition task. Thisyides
C1 model units were constrained by physiology data [1, 38, 39]
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computational neuroscience support to the conjecture ahatsk-
independent, unsupervised, developmental-like learstage may
exist in the ventral stream to generate a large dictionarghafpe-
tuned units with various degrees of selectivity and invareafrom
V1 to IT, consistently with recent data [54].

Materials and methods

Supplementary web material is also available (http://chitledu/softwar

datasets/serre/SerreOlivaPoggioPNASO7/index.htm)rachades, in
particular, a basic software implementation for the matthel animal /
non-animal stimulus database as well as supplementarjndéuding

a summary of different error measures for both the model anabim
observersé€.g.,roc curves).

The stimulus dataset. Allimages were gray-valugs6 x 256 pixel

images. The stimulus database contains a total of 600 astmalli

(a subset of the Corel database as in [32J6 x 256 image win-
dows were cropped around the animal from the origlis x 384

pixel images with a random offset to prevent the animal fréwags

Categorization by the model.  To train the PFC classification unit
in the model, we used a random splits procedure, which has bee
shown to provide a good estimate of the expected error of ssiela
fier [58]. The procedure is as follow:

1) Splitthe set of 1,200 (animal and non-animal) images into two
halves; denote one halfaining and the othefest

2) Imprint S4 units with specific examples of animal and non-
animal images from the training set of images% selected at ran-

e_

dom). Like units in lower stages become tuned to patchestafala
images (se8l), Ss units become tuned to views of the target object by
storing in their synaptic weights the pattern of activitytlo¢ir affer-
ents during a presentation of a particular exemplar. Thiissistent
with a large body of data that suggests that the selectivibearons
in IT depends on visual experience (see [25] for a review).

3) Train a PFC classification unit on the label@thining set of
images. The respongeof a classificationunit with input weights

i, ...,cKS4), when presented with an input pattexn=
(w1, ... zKg,) from the previous layerdy unit j, denotedr;, is

C =

be presented in the center of the image) and 600 non-aniinal st tuned to thej*" training example), is given by:

uli. Animal images were manually grouped into four categefvith
150 exemplars in each, that isgad close-body medium-bodyand
far-body.

[3]

J
The unit responsg € R is further binarizedy < 0) to obtain a

Y= ci%-

A set of distractors with matching mean distance from theazam classification labe{ -1, 1}. This supervised learning stage involves

(300 from natural and 300 from artificial scenes) was setkfrtan a

adjusting the synaptic weightsso as to minimize the overall classi-

database of annotated mean depth images [55]. We selecagesm fication errorE’ on the training set.In this paper we used one of the
with a mean distance from the camera below 1 m for head, betwe&implest types of linear classifier by computing the legstase fit so-

5 m and 20 m for close-body, betwe&®m and100 m for medium-

body as well as above 100 m and panoramic views for far-bodyz€

The database is publicly available at http://cbcl.mit/edftware-
datasets/serre/SerreOlivaPoggioPNASOQ7/index.htm.

Human psychophysics.
n = 24 in the first experiment with a fixed 50 ms SOA;= 14 in
the second experiment wiflt, 90° and180° rotated stimulin = 21
in the last experiment with a variable SOAs) gave a writtdéarimed

All participants (18 to 35 years of age;

lution of the regularized classification error evaluatedhantraining
t: 23

l
E=lly' =9'lI> + Alel*.

. =1
wherey* corresponds to the classification unit response forithe
training exampleg® is the true label of the*" training example and
A is a fixed constant. To solve Eg. 4 we used the non-biological

[4]

consent. There was approximately the same number of malieeand Matlab © (The MathWorks, Inc) left division operation for matri-

male observers in each experiment and none participatedriatinan
one of the three experiments. Participants were seateddrkaabm,

ces but we obtained similar results with a more biologicplausible
stochastic gradient learning approach using weight pestions mod-

0.5 m away from a computer screen, connected to a computer (Intéied from [59]. i.e., (z*,y’) pairs, where:" denotes thé'" image in
Pentium@© IV processor, 1 GB RAM, 2.4 GHz). The monitor refresh the training set ang® its associated label (animal or non-animal).

rate was 100 Hz allowing stimulito be displayed with a fradugation
of 10 ms and a resolution 01024 x 768.

We used the Matlal© (Mathworks Inc, Natick, MA) software
with the psychophysics toolbox [56, 57] to precisely time #timu-
lus presentations. In all experiments, the image durati@s2® ms.
In all experiments except the last one (see below) the mgskaapd
after a fixed inter-stimulus interval (I1SI) of 30 ms (corresgding to a

4) Evaluatethe performance of the classifier on fhestset.
We repeated the overall procedure= 20 times and computed the
average model performance. Note that the error bars for tuehin
Fig. 3 and 4 in the main manuscript correspond to the starefaods
computed over these = 20 random runs.

We are grateful to C. Cadieu, B. Desimone, M. Riesenhubétndblich,

Stimulus Onset AsynchrongO A of 50 ms). In the last experiment, M. Kouh, G. Kreiman, S. Thorpe and A. Torralba for comments &uitful

we randomly interleaved different ISI conditions: 0 ms ISOA =20

ms), 30 ms ISI (SOA =50 ms), 60 ms ISI (SOA =80 ms), or infinite
(i.e.,never appeared). The mask following the picture was a @/ r

dom noise mask, generated (for each trial) by filtering ramdoise
through a Gaussian filter.
The stimuli were presented in the center of the scregé x 256

pixels, abou® x 7° of visual angle, gray-level images). The 1,200

image stimuli (600 animals and 600 distractors) were ptesiim
random order and divided into 10 blocks of 120 images eactiicRa
pants were asked to answer as fast and as accurately ad@ddbid
image contained an animal, by pressingeaor nokey on a computer
keyboard. They were randomly asked to use their left or tigtmtd
for yes vs. no answers. Each experiment took approximateinig
to perform.
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discussions related to this work. We would also like to th@nRas, J. Dicarlo,
M. Greene, E. Meyers, E. Miller, P. Sinha, C. Tomasi and R.Rédren for
comments on this manuscript. This research was sponsorgdabys from
NIH, DARPA, ONR and the National Science Foundation. Aduditl sup-
port was provided by Eastman Kodak Company, Daimler Chrysienda
Research Institute, NEC Fund, Siemens Corporate Resetogbta, Sony
and the McDermott chair (T.P.).

IThe full training set is used to adjust the synaptic weights of the classification unit.

20ther classifiers could be used (a linear SVM gave very similar results). A recent study [9]
demonstrated that a linear classifier can indeed read-outwith high accuracy and over extremely
short times (a single bin as short as 12.5 millisecond) object identity, object category and other
information (such as position and size of the object) from the activity of about 100 neurons in
|

3A single classifier was trained on all four animal and non-animal categories together.
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Fig. 1. Sketch of the model.Tentative mapping between the ventral stream in the primate visual system (left) and the functional primitives of the feedforward model
(right). The model accounts for a set of basic facts about the cortical mechanisms of recognition that have been established over the last decades: From V1 to IT, there
is an increase in invariance to position and scale [1, 2, 4, 5, 6] and, in parallel, an increase in the size of the receptive fields [2, 4] as well as in the complexity of the
optimal stimuli for the neurons [2, 3, 7]. Finally adult plasticity and learning are probably present at all stages, and certainly at the level of IT [6] and PFC. The theory
assumes that one of the main functions of the ventral stream, just a part of visual cortex, is to achieve a trade-off between selectivity and invariance within a hierarchical
architecture. Asin [5], stages of simple(S) units with Gaussian tuning (plain circles and arrows), are loosely interleaved with layers of complex(C) units (dotted circles
and arrows), which perform a MAX operation on their inputs and provide invariance to position and scale (pooling over scales is not shown in the figure). The tuning
of the Sa, Sop, and S3 units (corresponding to V2, V4 and PIT) is determined here by a prior developmental-like unsupervised learning stage (see Sl). Learning of the
tuning of the S units and of the synaptic weights from S to the top classification units is the only task-dependent, supervised learning stage. The main route to IT
is denoted with black arrows while the bypass route [40] is denoted with blue arrows (see Sl). The total number of units in the model simulated in this paper is in the
order of 10 million. Colors indicate the correspondence between model layers and cortical areas. The table on the right provides a summary of the main properties of
the units at the different levels of the model. Note that the model is a simplification and only accounts for the ventral stream of visual cortex. Of course other cortical
areas (€.9d.,in the dorsal stream) as well as non-cortical structures (€.g.,basal ganglia) are likely to play a role in the process of object recognition. The diagram on the
left is modified from [60] (with permission by the author) which represents a juxtaposition of the diagrams of [61, 48].
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Fig. 2. Animal vs. non-animal categorization task.a) The four (balanced) classes of stimuli. Animal images (a subset of the image database used in [32]) were
manually arranged into four groups (150 images each) based on the distance of the animal from the camera: head (close-up), close-body (animal body occupying the
whole image), medium-body (animal in scene context) and far-body (small animal or groups of animals). Each of the four classes corresponds to different animal sizes
and, probably through the different amount of clutter relative to the object size, modulates the task difficulty. A set of matching distractors (300 each from natural and
artificial scenes (see Materials and Methodswas selected, so as to prevent human observers and the computational model from relying on low-level cues (see Sl).
b) Schematic of the task. A stimulus (gray-level image) is flashed for 20 ms, followed by a blank screen for 30 ms (i.e., SOA of 50 ms) and followed by a mask for 80
ms. Subjects ended the trial with a yes/no answer by pressing one of two keys.

Footline Author PNAS | Issue Date | Volume | Issue Number | 7



2.61
Mod: 40% um:38% Mod: 91% Hum: 33%
i K 2T
&
2.4
<)
2
(&)
G 1.81
% Mod: 44% Hum: 42%
s ]
[
& 14
' — Model
— = Human observers
1.0
| | | |

T T T T
Head Close- Medium- Far-
body body body

c d e

Mod: 22% Hum: 21%

Mod: 20% Hum: 75%

Mod: 100% Hum: 25% Mod: 100% Hum: 96%
. »

Mod: 91% Hum: 83%

Mod: 33% Hum: 21% Mod: 0% Hum: 29% Mod: 10% Hum:71% Mod: 100% Hum: 29%

A

Fig. 3. Comparison between the model and human observersa) Model vs. human-level accuracy. Human observers and the model exhibit a very similar
pattern of performance (measured with d’ measure, see Sl). Error bars indicate the standard errors for the model (computed over n = 20 random runs) and for
human observers (computed over n = 24 observers). Examples of classifications by the model and human observer€ommon false alarms (b) and misses
(c) for the model and human observers. Examples of animal images for which the agreement between the model and human observers is (d) poor and (e) good. The
percentages above each thumbnail correspond to the number of times the image was classified as animal by the model (green number) or by human observers (black

number, see text for details). Part of the discrepancy between the model and human observers is likely to be due to the relatively small set of examples used to train
the model (300 animal and 300 non-animal images).

8 | www.pnas.org —— Footline Author



