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Abstract

A key problem in learning representations of multiple objects from unlabeled images is
that it is a priori impossible to tell which part of the image corresponds to each individual
object, and which part is irrelevant clutter that is not associated with the objects. Clutter
hurts object recognition, because it generates false alarms and imposes additional compu-
tational costs for rejecting them. Distinguishing individual objects in a scene would allow
unsupervised learning of multiple objects from unlabeled images. There is psychophysical
and neurophysiological evidence that the brain, which is faced with a similar challenge, em-
ploys selective visual attention to select relevant parts of the image and to serialize the per-
ception of individual objects. We propose a method for the selection of salient regions likely
to contain objects, based on bottom-up visual attention, in order to allow unsupervised one-
shot learning of multiple objects in cluttered images. By comparing the performance of
David Lowe’s recognition algorithm with and without attention, we demonstrate in our ex-
periments that the proposed approach can indeed enable learning of multiple objects from
complex scenes, and that it can strongly improve learning and recognition performance in
the presence of large amounts of clutter.
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1 Introduction

Object recognition with computer algorithms has seen tremendous progress over
the past years, both for specific domains such as face recognition [1,2,3] and for
more general object domains [4,5,6,7,8]. Most of these approaches require seg-
mented and labeled objects for training, or at least that the training object is the
dominant part of the training images. None of these algorithms can be trained on
unlabeled images that contain large amounts of clutter or multiple objects.

But what is an object? A precise definition of “object”, without taking into account
the purpose and context, is of course impossible. However, it is clear that we wish
to capture the appearance of those lumps of matter to which people tend to assign a
name. Examples of distinguishing properties of objects are physical continuity (i.e.
an object may be moved around in one piece), having a common cause or origin,
having well defined physical limits with respect to the surrounding environment,
being made of a well defined substance. In principle, a single image taken in an
unconstrained environment is not sufficient to allow a computer algorithm, or a
human being, to decide where an object starts and another object ends. However,
a number of cues which are based on the statistics of our everyday’s visual world
are useful to guide this decision. The fact that objects are mostly opaque and often
homogeneous in appearance makes it likely that areas of high contrast (in disparity,
texture, color, brightness) will be associated to their boundaries. Objects that are
built by humans are often designed to be easily seen and discriminated from their
environment.

Imagine a situation in which you are shown a scene, e.g. a shelf with groceries, and
later you are asked to identify which of these items you recognize in a different
scene, e.g. in your grocery cart. While this is a common situation in everyday life
and easily accomplished by humans, none of the conventional object recognition
methods is capable of coping with this situation. How is it that humans can deal
with these issues with such apparent ease?

The human visual system is able to reduce the amount of incoming visual data to a
small but relevant amount of information for higher-level cognitive processing. Two
complementary mechanisms for the selection of individual objects have been pro-
posed, bottom-up selective attention and grouping based on segmentation. While
saliency-based attention concentrates on featurecontrasts[9], grouping and seg-
mentation attempt to find regions that arehomogeneousin certain features [10,11].
Grouping has been applied successfully to object recognition [12,13]. In this pa-
per we explore bottom-up attention. In particular, we postulate that a bottom-up
attentional mechanism that is designed to respond to areas of high contrast, will
frequently select image regions that correspond to objects. Our experiments are
designed to test this hypothesis.
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Attention is the process of selecting and gating visual information based on saliency
in the image itself (bottom-up), and on prior knowledge about scenes, objects and
their interrelations (top-down) [14,15]. Upon closer inspection, the “grocery cart
problem” (also known as the “bin of parts problem” in the robotics community)
poses two complementary challenges – serializing the perception and learning of
relevant information (objects), and suppressing irrelevant information (clutter). Vi-
sual attention addresses both problems by selectively enhancing perception at the
attended location, and by successively shifting the focus of attention to multiple
locations.

Several computational implementations of models of visual attention have been
published. Tsotsos and colleagues [16] use local winner-take-all networks and top-
down mechanisms to selectively tune model neurons at the attended location. Deco
& Schürmann [17] modulate the spatial resolution of the image based on a top-
down attentional control signal. Itti & Koch [9] introduced a model for bottom-
up selective attention based on serially scanning a saliency map, which is com-
puted from local feature contrasts, for salient locations in the order of decreasing
saliency. Closely following and extending Duncan’s Integrated Competition Hy-
pothesis [18], Sun & Fisher [19] developed and implemented a common framework
for object-based and location-based visual attention using “groupings”. Presented
with a manually preprocessed input image, their model replicates human viewing
behavior for artificial and natural scenes.

The main motivation for attention in machine vision is cueing subsequent visual
processing stages such as object recognition to improve performance and/or effi-
ciency [20,21]. However, little work has been done to verify these benefits exper-
imentally (but see [22,23,24]). The focus of this paper is on testing the usefulness
of selective visual attention for object recognition experimentally. We do not in-
tend to compare the performance of the various attention systems – this would be
an interesting study in its own right. Instead, we use Itti & Koch’s saliency-based
attention system, endow it with a mechanism for identifying regions that are likely
to contain objects around salient locations, and use this system to demonstrate the
benefits of selective visual attention for: (i) learning sets of object representations
from single images, and identifying these objects in cluttered test images contain-
ing target and distractor objects; and (ii) object learning and recognition in highly
cluttered scenes.

2 Approach

To investigate the effect of attention on object recognition independent of the spe-
cific task, we do not consider a priori information about the images or the ob-
jects. Hence, we do not make use of top-down attention and rely solely on bottom-
up, saliency-based attention. For object recognition, we selected Lowe’s algorithm
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[25,26] as an example for a general purpose recognition system with one-shot learn-
ing. Lowe’s algorithm is widely recognized as the state of the art for general pur-
pose real-world object learning and recognition.

2.1 Bottom-up saliency-based region selection

Attention as a selective gating mechanism is often likened to a spotlight [27,28],
enhancing visual processing in the attended (“illuminated”) region of a few degrees
of visual angle [29]. In a modification to the spotlight metaphor, the size of the
attended region can be adjusted depending on the task, making attention similar
to a zoom lens [30,31]. Neither of these theories considers the shape and extent
of the attended object for determining the attended area. This may seem natural,
since commonly attention is believed to actbeforeobjects are recognized. However,
experimental evidence suggests that attention can be tied to objects, object parts, or
groups of objects [32,33]. How can we attend to objects before we recognize them?
We have developed a model that estimates the extent of salient objects solely based
on bottom-up information, serving as an initial step for subsequent object detection.

Our attention system is based on the Itti et al. [9] implementation of the Koch &
Ullman [34] saliency-based model of bottom-up attention. This model’s usefulness
as a front-end for object recognition is limited by the fact that its output is merely a
pair of coordinates in the image corresponding to the most salient location. We in-
troduce a method for extracting the image region that contains the attended objects
from low-level features with negligible additional computational cost. We briefly
review the saliency model in order to explain our extensions in the same formal
framework.

The input imageI is sub-sampled into a Gaussian pyramid [35], and each pyramid
level σ is decomposed into channels for red (R), green (G), blue (B), yellow (Y ),
intensity (I) and local orientation (Oθ). If r, g andb are the red, green and blue
values of the color image, normalized by the image intensityI, thenR = r − (g +
b)/2, G = g−(r+b)/2, B = b−(r+g)/2, andY = r+g−2(|r−g|+b) (negative
values are set to zero). Local orientationsOθ are obtained by applying steerable
filters to the images in the intensity pyramidI [36,37]. From these channels, center-
surround “feature maps” are constructed and normalized:

FI,c,s =N (|I(c)	 I(s)|) (1)
FRG,c,s =N (|(R(c)−G(c))	 (R(s)−G(s))|) (2)
FBY,c,s =N (|(B(c)− Y (c))	 (B(s)− Y (s))|) (3)
Fθ,c,s =N (|Oθ(c)	Oθ(s)|) (4)

Here,	 denotes the across-scale difference between two maps at the center (c)
and the surround (s) levels of the respective feature pyramids.N (·) is a an itera-

4



0o 45o

90o 135o

Orientation Feature Maps

Saliency Map

Color Feature Maps
BY

RG

Feature Maps
Intensity

Winning Feature Map

After Segmentation

Scaled-up and smoothed

Contrast-modulated image

Multiscale Feature Extraction
of Colors (RG and BY), Intensities,
and Orientations (4 orientations)

Center-surround

spatial competition
differences and

Inhibition
of return

Winner-
take-all

Feature
Combination

Input image

Orientation Conspicuity MapIntensity Conspicuity MapColor Conspicuity Map

argmax

Computation of 
saliency
Region selection

Compared locations
Across-scale 
addition

argmax

Fig. 1. Illustration of the processing steps for obtaining the attended region. The input im-
age is processed for low-level features at multiple scales, and center-surround differences
are computed (eqs. 1-4). The resulting feature maps are combined into conspicuity maps
(eq. 7), and finally into a saliency map (eq. 8). A winner-take-all neural network determines
the most salient location, which is then traced back through the various maps to identify the
feature map that contributes most to the saliency of that location (eqs. 9 and 10). After seg-
mentation around the most salient location, this winning feature map is used for obtaining
a smooth object mask at image resolution, and for object-based inhibition of return.

tive, nonlinear normalization operator (for details see [38]). The feature maps are
summed over the center-surround combinations using across-scale addition⊕, and
the sums are normalized again:
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F̄l = N

 4⊕
c=2

c+4⊕
s=c+3

Fl,c,s

∀l ∈ LI ∪ LC ∪ LO (5)

with
LI = {I}, LC = {RG, BY }, LO = {0◦, 45◦, 90◦, 135◦} (6)

For the general features color and orientation, the contributions of the sub-features
are linearly summed and normalized once more to yield “conspicuity maps”. For
intensity, the conspicuity map is the same asF̄I obtained in eq. 5:

CI = F̄I , CC = N

 ∑
l∈LC

F̄l

 , CO = N

 ∑
l∈LO

F̄l

 (7)

All conspicuity maps are combined into one saliency map:

S =
1

3

∑
k∈{I,C,O}

Ck (8)

The locations in the saliency map compete for the highest saliency value by means
of a winner-take-all (WTA) network of integrate-and-fire neurons. The winning
location(xw, yw) of this process is attended (the yellow circle in fig. 1).

While Itti’s model successfully identifies this most salient location in the image, it
has no notion of the extent of the image region that is salient around this location.
We introduce a method to estimate this region based on the maps and salient lo-
cations computed thus far, using feedback connections in the saliency computation
hierarchy (fig. 1). Looking back at the conspicuity maps, we find the one map that
contributes most to the activity at the most salient location:

kw = argmax
k∈{I,C,O}

Ck(xw, yw) (9)

Examining the feature maps that gave rise to the conspicuity mapCkw , we find the
one that contributes most to its activity at the winning location:

(lw, cw, sw) = argmax
l∈Lkw ,c∈{2,3,4},s∈{c+3,c+4}

Fl,c,s(xw, yw) (10)

with Lkw as defined in eq. 6. The “winning” feature mapFlw,cw,sw (fig. 1) is seg-
mented using region growing around(xw, yw) and adaptive thresholding [39]. The
segmented feature map̂Fw is used as a template to trigger object-based inhibition
of return (IOR) in the WTA network, thus enabling the model to attend to several
regions subsequently, in order of decreasing saliency.

We derive a maskM at image resolution by thresholdinĝFw, scaling it up, and
smoothing it. Smoothing can be achieved by convolving with a separable two-
dimensional Gaussian kernel (σ = 20 pixels). We use a computationally more
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efficient method, consisting of opening the binary mask with a disk of 8 pixels ra-
dius as a structuring element, and using the inverse of the chamfer 3-4 distance for
smoothing the edges of the region.M is normalized to be 1 within the attended ob-
ject, 0 outside the object, and it has intermediate values at the object’s edge. We use
this mask to modulate the contrast of the original imageI (dynamic range[0, 255]):

I ′(x, y) = [255−M(x, y) · (255− I(x, y))] (11)

where[·] symbolizes the rounding operation. Eq. 11 is applied separately to the r,
g and b channels of the image.I ′ is used as the input to the recognition algorithm
instead ofI (fig. 2).

As part of their selective tuning model of visual attention, Tsotsos and colleagues
[16] introduced a mechanism for tracing back activations through a hierarchical
network of WTA circuits to identify contiguous image regions with similarly high
saliency values within a given feature domain. Our method is similar in spirit but
extends across feature domains. By tracing back the activity from the attended lo-
cation in the saliency map through the hierarchy of conspicuity and feature maps,
we identify the feature that contributes most to the activity of the currently fixated
location. We identify a contiguous region around this location with high activity in
the feature map that codes for this most active feature. This procedure is motivated
by the observation that between-object variability of visual information is signifi-
cantly higher than within-object variability [40]. Hence, even if two salient objects
are close to each other or occluding each other, it is not very likely that they are
salient for the same reason. This means that they can be distinguished in the feature
maps that code for their respective most active features.

The additional computational cost for the region selection is minimal, because the
feature and conspicuity maps have already been computed during the processing
for saliency. Note that although ultimately only the winning feature map is used to
segment the attended image region, the interaction of WTA and IOR operating on
the saliency map provides the mechanism for sequentially attending several salient
locations.

2.2 Object learning and recognition with attention

For all experiments described in this paper, we use the object recognition algorithm
developed by Lowe [4,25,26]. The algorithm consists of two main stages – the
selection of local, scale-invariant features (“SIFT” keypoints), and the matching of
constellations of such keypoints.

Local keypoints are found in four steps [4]. First, scale-space extrema are detected
by searching over many scales and all image locations. This is implemented us-
ing difference-of-Gaussian functions, which are computed efficiently by subtract-
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(b) (c) (d)(a)

Fig. 2. Example for SIFT keypoints used for object recognition by Lowe’s algorithm. (a)
keypoints of the entire image; (b-d) keypoints extracted for the three most salient regions,
representing “monitor”, “computer”, and “set of books”. Restricting the keypoints to a
region that is likely to contain an object enables the recognition algorithm to subsequently
learn and recognize multiple objects.

ing blurred and sub-sampled versions of the image. In the second step, a detailed
model is fitted to the candidate locations, and stable keypoints are selected (fig. 2a).
Next, orientations are assigned to the neighborhood of each keypoint based on local
gray value gradients. With orientation, scale, and location of the keypoints known,
invariance to these parameters is achieved by performing all further operations rel-
ative to these dimensions. In the last step, 128-dimensional “SIFT”(Scale Invariant
Feature Transform) keypoint descriptors are derived from image gradients around
the keypoints, providing robustness to shape distortions and illumination changes.

Object learning consists of extracting the SIFT features from a reference image,
and storing them in a data base (one-shot learning). When presented with a new
image, the algorithm extracts the SIFT features and compares them with the key-
points stored for each object in the data base. To increase robustness to occlusions
and false matches from background clutter, clusters of at least three feature points
need to be matched successfully. This test is performed using a hash table imple-
mentation of the generalized Hough transform [41]. From matching keypoints, the
object pose is approximated, and outliers and any additional image features con-
sistent with the pose are determined. Finally, the probability that the measured set
of features indicates the presence of an object is obtained from the accuracy of the
fit of the keypoints and the probable number of false matches. Object matches are
declared based on this probability [4].

In our model, we introduce the additional step of finding salient image patches
as described in section 2.1 for learning and recognition before keypoints are ex-
tracted (fig. 2b-d). The use of contrast modulation as a means of deploying object-
based attention is motivated by neurophysiological experiments that show that in
the cortical representation, attentional enhancement acts in a manner equivalent
to increasing stimulus contrast [42,43]; as well as by its usefulness with respect
to Lowe’s recognition algorithm. Keypoint extraction relies on finding luminance
contrast peaks across scales. As we remove all contrast from image regions outside
the attended object (eq. 11), no keypoints are extracted there. As a result, deploying
selective visual attention spatially groups the keypoints into likely candidates for
objects.
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In the learning phase, this selection limits the formation of a model to the attended
image region, thereby avoiding clutter and, more importantly, enabling the aqui-
sition of several object models at multiple fixations in a single image. During the
recognition phase, only keypoints in the attended region need to be matched to
the stored models, again avoiding clutter, and making it easier to recognize multi-
ple objects. See fig. 8 for an illustration of the reduction in complexity due to this
procedure.

To avoid strong luminance contrasts at the edges of attended regions, we smoothed
the representation of the region as described in section 2.1. In our experiments, we
found that the graded edges of the salient regions introduce spurious features, due
to the artificially introduced gradients. Therefore, we threshold the smoothed mask
before contrast modulation.

The number of fixations used for recognition and learning depends on the resolution
of the images, and on the amount of visual information. In low-resolution images
with few objects, three fixations may be sufficient to cover the relevant parts of
the image. In high-resolution images with a lot of visual information, up to 30
fixations are required to sequentially attend to most or all object regions. Humans
and monkeys, too, need more fixations, to analyze scenes with richer information
content [44]. The number of fixations required for a set of images is determined
by monitoring after how many fixations the serial scanning of the saliency map
starts to cycle for a few typical examples from the set. Cycling usually occurs when
the salient regions have covered approximately 40-50% of the image area. We use
the same number of fixations for all images in an image set to ensure consistency
throughout the respective experiment.

It is common in object recognition to use interest operators [45] or salient feature
detectors [46] to select features for learning an object model. This is different, how-
ever, from selecting an image region and limiting the learning and recognition of
objects to this region.

In the next section, we verify that the selection of salient image regions does indeed
produce meaningful results when compared with random region selection. In the
two sections after that, we report experiments that address the benefits of attention
for serializing visual information processing and for suppressing clutter.

3 Selective attention vs. random patches

In the first experiment, we compare our saliency-based region selection method
with randomly selected image patches using a series of images with many occur-
rences of the same objects. Since human photographers tend to have a bias towards
centering and zooming on objects, we make use of a robot for collecting a large
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Fig. 3. Four representative frames from the video sequence recorded by the robot. The full
video is available at: http://klab.caltech.edu/∼urut/cviu04

number of test images in an unbiased fashion.

Our hypothesis is that regions selected as described in section 2.1 are more likely
to contain objects than randomly selected regions. If this hypothesis were true,
then attempting to match image patches across frames would produce more hits for
saliency-based region selection than for random region selection, because in our
image sequence objects re-occur frequently.

This does not imply, however, that every image patch that is learned and recognized
corresponds to an object. Frequently, groups of objects (e.g. a stack of books) or
parts of objects (e.g. a corner of a desk) are selected. For the purpose of the dis-
cussion in this section we denote patches that contain parts of objects, individual
objects, or groups of objects as “object patches”. In this section we demonstrate
that attention-based region selection finds more object patches that are more reli-
ably recognized throughout the image set than random region selection.

3.1 Experimental setup

We used an autonomous robot equipped with a camera for image aquisition. The
robot’s navigation followed a simple obstacle avoidance algorithm using infrared
range sensors for control. The camera was mounted on top of the robot at about
1.2 m height. Color images were recorded at 320×240 pixels resolution at 5 frames
per second. A total of 1749 images was recorded during an almost 6 min run2 . See
fig. 3 for example frames. Since vision was not used for navigation, the images
taken by the robot are unbiased. The robot moved in a closed environment (indoor
offices/labs, four rooms, approximately 80 m2). The same objects reappear repeat-
edly in the sequence.

The process flow for selecting, learning, and recognizing salient regions is shown in
fig. 4. Because of the low resolution of the images, we use onlyN = 3 fixations in
each image for recognizing and learning patches. Note that there is no strict sepa-
ration of a training and a test phase here. Whenever the algorithm fails to recognize
an attended image patch, it learns a new model from it. Each newly learned patch

2 The full video as recorded and with either salient or randomly chosen regions marked is
available at: http://klab.caltech.edu/∼urut/cviu04
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Fig. 4. The process flow in our multi-object recognition experiments. The image is pro-
cessed by the saliency-based attention mechanism as described in fig. 1. In the resulting
contrast-modulated version of the image (eq. 11), keypoints are extracted (fig. 2) and used
for matching the region with one of the learned object models. A minimum of three key-
points is required for this process [25]. In the case of successful recognition, the counter
for the matched model is incremented, otherwise a new model is learned. By triggering
object-based inhibition of return, this process is repeated for theN most salient regions.
The choice ofN depends mainly on the image resolution. For the low resolution (320×240
pixels) images used in section 3,N = 3 is sufficient to cover a considerable fraction (ap-
proximately 40%) of the image area.

is assigned a unique label, and we count the number of matches for the patch over
the entire image set. A patch is considered “useful” if it is recognized at least once
after learning, thus appearing at least twice in the sequence.

We repeated the experiment without attention, using the recognition algorithm on
the entire image. In this case, the system is only capable of detecting large scenes
but not individual objects or object groups. For a more meaningful control, we
repeated the experiment with randomly chosen image regions. These regions are
created by a pseudo region growing operation at the saliency map resolution. Start-
ing from a randomly selected location, the original threshold condition for region
growth is replaced by a decision based on a uniformly drawn random number. The

11



patches are then treated the same way as true attention patches (see section 2.1).
The parameters are adjusted such that the random patches have approximately the
same size distribution as the attention patches.

Note that it is not practical to separate the randomization of the location selection
and the region growing. For the region growing based on the most salient feature
as described in section 2.1 it is necessary to have activity at the selected location
in the saliency map and at least a subset of conspicuity and feature maps. The
likelihood for this to be true for a randomly selected location is small. It would be
possible, however, to select the location using the saliency-based attention model,
and to grow the region in a random fashion as described above. This procedure
would not give any additional insights though, because there is a high probability
of substantial overlap between a region grown around a salient location as described
in section 2.1 and a randomly grown region around the same location. At least the
original location would be part of both regions, very likely also image parts in the
immediate neighborhood, and then, with decreasing likelihood, parts of the image
further away.

Ground truth for all experiments is established manually. This is done by displaying
every match established by the algorithm to a human subject who has to rate it as
either correct or incorrect based on whether the two patches have any significant
overlap. The false positive rate is derived from the number of patches that were
incorrectly associated with one another.

Our current implementation is capable of processing about 1.5 frames per second
at320× 240 pixels resolution on a 2.0 GHz Pentium 4 mobile CPU. This includes
attentional selection, shape estimation, and recognition or learning. Note that we
use the robot only as an image acquisition tool in this experiment. For details on
vision-based robot navigation and control see for instance [47,48].

3.2 Results

Using the recognition algorithm without attentional selection results in 1707 of the
1749 images being pigeon-holed into 38 unique object models, representing non-
overlapping large views of the rooms visited by the robot. The remaining 42 images
are learned as new models, but then never recognized again. The models learned
from these large scenes are not suitable for detecting individual objects. We have
85 false positives, i.e. the recognition system indicates a match between a learned
model and an image, where the human subject does not indicate an agreement.
This confirms that in this experiment, recogniton without attention does not yield
any meaningful results.

Attentional selection identifies 3934 useful patches in the approximately 6 min of
processed video, associated with 824 object models. Random region selection only

12



yields 1649 useful patches, associated with 742 models (table 1). With saliency-
based region selection, we find 32 (0.8%) false positives, with random region se-
lection 81 (6.8%).

Table 1
Results using attentional selection and random patches.

Attention Random

number of patches recognized 3934 1649

average per image 2.25 0.95

number of unique object patches 824 742

number of good object patches 87 (10.6%) 14 (1.9%)

number of patches associated with good object patches1910 (49%) 201 (12%)

false positives 32 (0.8%) 81 (6.8%)

To better compare the two methods of region selection, we assume that “good”
object patches should be recognized multiple times throughout the video sequence,
since the robot visits the same locations repeatedly. We sort the patches by their
number of occurrences and set an arbitrary threshold of 10 recognized occurrences
for “good” object patches for this analysis (fig. 5). With this threshold in place,
attentional selection finds 87 good object patches with a total of 1910 instances
associated to them. With random regions, only 14 good object patches are found
with a total of 201 instances. The number of patches associated with good object
patches is computed from fig. 5 as:

Ng =
∑

∀i:ni≥10

ni (ni ∈ O) (12)

whereO is an ordered set of all learned objects, sorted descending by the number
of detections.

From these results it is clear that our attention-based algorithm systematically se-
lects regions that can be recognized repeatedly from various viewpoints with much
higher reliability than randomly selected regions. Since we are selecting for regions
with high contrast, the regions are likely to contain objects or object parts. This hy-
pothesis is further supported by the results shown in the next two sections. With this
empirical verification of the usefulness of the region selection algorithm detailed in
section 2 we now go on to exploring its effect on processing multiple objects, and
on object learning and recognition in highly cluttered scenes.
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Fig. 5. Learning and recognition of object patches in a stream of video images from a
camera mounted on a robot. Object patches are labeled (x axis), and every recognized
instance is counted (y axis). The threshold for “good” object patches is set to 10 instances.
Region selection with attention finds 87 good object patches with a total of 1910 instances.
With random region selection, 14 good object patches with 201 instances are found. Note
the different linear scales on either side of the axis break in thex axis.

4 Learning multiple objects from natural images

In this experiment, we test the hypothesis that attention can enable the learning and
recognition of multiple objects in individual natural scenes. We use high-resolution
digital photographs of sets of objects in indoor environments for this purpose.

4.1 Experimental setup

We placed a number of objects into different settings in office and lab environments
and took pictures of the objects with a digital camera. We obtained a set of 102
images at a resolution of 1280×960 pixels3 . Images can contain large or small
subsets of the objects. We select one of the images for training (fig. 6a). The other
101 images are used as test images.

For learning and recognition we use 30 fixations, which cover about 50% of the im-
age area. Learning is performed completely unsupervised. A new model is learned
at each fixation. During testing, each fixation on the test image is compared to
each of the learned models. Ground truth is established manually by inspecting the
learned patches and the patches extracted from the test images and flagging pairs

3 The image set is available for download at: http://klab.caltech.edu/∼urut/cviu04
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(a) (b)

(c) (d)

Fig. 6. Learning and recognition of two objects in cluttered scenes. (a) the image used
for learning the two objects; (b-d) examples for images in which objects are recognized
as matches with one or both of the objects learned from (a). The patches, which were
obtained from segmenting regions at multiple salient locations, are color coded – yellow
for the book, and red for the box. The decision whether a match occurred is made by the
recognition algorithm without any human supervision.

that contain matching objects.

4.2 Results

From the training image, the system learns models for two objects that can be rec-
ognized in the test images – a book and a box (fig. 6). Of the 101 test images, 23
contain the box, and 24 the book, and of these four images contain both objects.
Table 2 shows the recognition results for the two objects.

Table 2
Results for recognizing two objects that were learned from one image.

object hits misses false positives

box 21 (91%) 2 (9%) 0 (0%)

book 14 (58%) 10 (42%) 2 (2.6%)

Even though the recognition rates for the two objects are rather low, one should
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(a) (b)

(c)

Fig. 7. Another example for learning several objects from a high-resolution digital photo-
graph. The task is to memorize the items in the cupboard (a) and to identify which of the
items are present in the test scenes (b) and (c). Again, the patches are color coded – blue
for the soup can, yellow for the pasta box, and red for the label on the beer pack. In (a),
only those patches are shown that have a match in (b) or (c), in (b) and (c) only those that
have a match in (a).

consider that one unlabeled image is the only training input given to the system
(one-shot learning). From this one image, the combined model is capable of identi-
fying the book in 58%, and the box in 91% of all cases, with only two false positives
for the book, and none for the box. It is difficult to compare this performance with
some baseline, since this task is impossible for the recognition system alone, with-
out any attentional mechanism.

In fig. 7 we show another example for learning multiple objects from one photo-
graph, and recognizing the objects in a different visual context. In fig. 7a, models
for the soup cans are learned from several overlapping regions, and they all match
with each other. One model is learned for the pasta box and the label on the beer
pack, respectively. All three objects are found successfully in both test images.
There is one false positive in fig. 7c – a bright spot on the table is mistaken for a
can. This experiment is very similar to the “grocery cart problem” mentioned in the
introduction. The images were processed at a resolution of1024× 1536 pixels, 15
fixations were used for training and 20 fixations for testing.

Fig. 8 illustrates how attention-based region selection helps to reduce the complex-
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Fig. 8. The SIFT keypoints for the images shown in fig. 7. The subsets of keypoints in-
dentified by salient region selection for each of the three objects are color coded with the
same colors as in the previous figure. All other keypoints are shown in black. In fig. 7 we
show all regions that were found for each of the objects – here we show the keypoints
from one example region for each object. This figure illustrates the enormous reduction in
complexity faced by the recognition algorithm when attempting to match constellations of
keypoints between the images.

ity of matching constellations of keypoints between the images. Instead of attempt-
ing to match keypoint constellations based on the entire set of keypoints identified
in the image, only the color coded subsets need to be compared to each other. The
subsets with matching colors were identified as object matches by the recognition
algorithm. This figure also illustrates that keypoints are found at all textured image
locations – at the edges as well as on the faces of objects.

5 Objects in cluttered scenes

In the previous section, we have shown that selective attention enables the learning
of two or more objects from single images. In this section, we investigate how
attention can help to recognize objects in highly cluttered scenes.
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(c)(b)(a)

Fig. 9. (a) Six of the 21 objects used in the experiment. Each object is scaled such that
it consists of approximately 2500 pixels. Artificial pixel and scaling noise is added to ev-
ery instance of an object before merging it with a background image; (b,c) Examples of
synthetically generated test images. Objects are merged with the background at a random
position by alpha-blending. The ratio of object area vs. image area (relative object size)
varies between (b) 5% and (c) 0.05%.

5.1 Experimental setup

To systematically evaluate recognition performance with and without attention, we
use images generated by randomly merging an object with a background image
(fig. 9). This design of the experiment enables us to generate a large number of
test images in a way that gives us good control of the amount of clutter versus the
size of the objects in the images, while keeping all other parameters constant [44].
Since we construct the test images, we also have easy access to ground truth. We
use natural images for the backgrounds so that the abundance of local features in
our test images matches that of natural scenes as closely as possible.

We quantify the amount of clutter in the images by therelative object size(ROS),
defined as the ratio of the number of pixels of the object over the number of pixels
in the entire image:

ROS =
#pixels(object)

#pixels(image)
(13)

To avoid issues with the recognition system due to large variations in theabsolute
size of the objects, we leave the number of pixels for the objects constant (with
the exception of intentionally added scale noise), and vary the ROS by changing
the size of the backgound images in which the objects are embedded. Since our
background images contain fairly uniform amounts of clutter within the images as
well as between images, the ROS can be used as an inverse measure of the amount
of clutter faced by the object recognition algorithm when it attempts to learn or
recognize the objects contained in the images. Alarge ROS means that the object
is relatively large in the image, and hence that it is faced with relativelylittle clutter.
A small ROS, on the other hand, means a lot of clutter.

To introduce variability in the appearance of the objects, each object is rescaled
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by a random factor between0.9 and1.1, and uniformly distributed random noise
between−12 and12 is added to the red, green and blue value of each object pixel
(dynamic range is[0, 255]). Objects and backgrounds are merged by blending with
an alpha value of 0.1 at the object border, 0.4 one pixel away, 0.8 three pixels away
from the border, and 1.0 inside the objects, more than three pixels away from the
border. This prevents artificially salient edges at the object borders and any high
frequency components associated with them.

We created six test sets with ROS values of 5%, 2.78%, 1.08%, 0.6%, 0.2% and
0.05%, each consisting of 21 images for training (one image of every object) and
420 images for testing (20 test images for every object). The background images for
training and test sets are randomly drawn from disjoint image pools to avoid false
positives due to repeating features in the background. A ROS of 0.05% may seem
unrealistically low, but humans are capable of recognizing objects with a much
smaller relative object size, for instance for reading street signs while driving [49].

During training, object models are learned at the five most salient locations of each
training image. That is, the object has to be learned by finding it in a training image.
Learning is unsupervised, and thus most of the learned object models do not contain
an actual object. During testing, the five most salient regions of the test images are
compared to each of the learned models. As soon as a match is found, positive
recognition is declared. Failure to attend to the object during the first five fixations
leads to a failed learning or recognition attempt.

5.2 Results

Learning from our data sets results in a classifier that can recognizeK = 21 objects.
The performance of each classifieri is evaluated by determining the number of true
positivesTi and the number of false positivesFi. The overall true positive ratet
(also known as detection rate) and the false positive ratef for the entire multi-class
classifier are then computed as [50]:

t =
1

K

K∑
i=1

Ti

Ni

(14)

f =
1

K

K∑
i=1

Fi

N i

(15)

Here,Ni is the number of positive examples of classi in the test set, andN i is
the number of negative examples of classi. Since in our experiments the negative
examples of one class consist of the positive examples of all other classes, and since
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Fig. 10. True positive rate (t) for a set of artificial images without attention (red) and with
attention (green) over the relative object size (ROS). The ROS is varied by keeping the
absolute object size constant at 2500 pixels±10%, and varying the size of the background
images. Error bars indicate the standard error for averaging over the performance of the
21 classifiers. The human subject validation curve (blue) separates the difference between
the performance with attention (green) and 100% into problems of the recognition system
(difference between the blue and the green curves) and problems of the attention system
(difference between the blue curve and 100%). The false positive rate is less than 0.07%
for all conditions.

there are equal numbers of positive examples for all classes, we can write:

N i =
K∑

j=1,j 6=i

Nj = (K − 1)Ni (16)

To evaluate the performance of the classifier it is sufficient to consider only the
true positive rate, since the false positive rate is consistently below 0.07% for all
conditions, even without attention and at the lowest ROS of 0.05%.

We evaluate performance (true positive rate) for each data set with three different
methods: (i) learning and recognition without attention; (ii) learning and recog-
nition with attention and (iii) human validation of attention. The third procedure
attempts to explain what part of the performance difference between (ii) and 100%
is due to shortcomings of the attention system, and what part is due to problems
with the recognition system.

For human validation, all images in which the objects cannot be recognized au-
tomatically are evaluated by a human subject. The subject can only see the five
attended regions of all training images and of the test images in question, all other
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parts of the images are blanked out. Solely based on this information, the subject
is asked to indicate matches. In this experiment, matches are established whenever
the attention system extracts the object correctly during learning and recognition.
In the cases in which the human subject is able to identify the objects based on the
attended patches, the failure of the combined system is due to shortcomings of the
recognition system. On the other hand, if the human subject fails to recognize the
objects based on the patches, the attention system is the component responsible for
the failure. As can be seen in fig. 10, the human subject can recognize the objects
from the attended patches in most failure cases, which implies that the recognition
system is the main cause for the failure rate. Significant contributions to the fail-
ure rate by the attention system are only observed for the highest amount of clutter
(ROS = 0.05%).

The results in fig. 10 demonstrate that attention has a sustained effect on recognition
performance for all reported relative object sizes. With more clutter (smaller ROS),
the influence of attention becomes more accentuated. In the most difficult case
(0.05% relative object size), attention increases the true positive rate by a factor of
10. Note that forROS > 5%, learning and recognition done on the entire image
(red dashed line in fig. 10) works well without attention, as reported in [4,25,26].

We used five fixation throughout the experiment to ensure consistency. In prelime-
nary experiments we investigated larger numbers of fixations as well. The perfor-
mance increases slightly for more fixations, but the effect of adding more clutter
remains the same.

6 Discussion

We set out to test two hypotheses for the effects of attention on object recognition.
The first is that attention can serialize the learning and recognition of multiple ob-
jects in individual images. With the experiments in section 4 we show that this new
mode of operation, which is impossible for the recognition system without prior re-
gion selection, is indeed made possible by using our saliency-bases region selection
algorithm.

Secondly, we show that spatial attention improves the performance of object learn-
ing and recognition in the presence of large amounts of clutter by up to an order
of magnitude. The addition of the attention-based region selection makes object
recognition more robust to distracting clutter in the image.

We have limited our experiments to bottom-up attention to avoid task secificity.
However, in many applications, top-down knowledge can be very useful for vi-
sual processing [51], in addition to the saliency-based attention described here. In
particular for cases where behaviorally relevant objects may not be salient, a top-
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down mechanism for guiding attention to task-relevant parts of the scene becomes
necessary [52].

We have selected Lowe’s recognition algorithm for our experiments because of its
suitability for general object recognition. However, our experiments and their re-
sults do not depend on that specific choice for a recognition system. In fact, we
have shown the suitability of the method for a biologically realistic object recogni-
tion system in a different context [24].

Neurophysiological experiments in monkeys show that the activity of neurons that
participate in object recognition is only modulated by a relatively small amount due
to attentional processes [42,43]. This should be taken into account when modeling
attention and recognition in a biologically plausible manner. Since much of the
early visual processing in cortex happens in parallel across the entire visual field,
no computational resources are wasted by processing information outside the focus
of attention. By modulating the activities of certain groups of neurons, selective
visual attention serves as a gateway for cognitive processing by areas higher in the
visual processing hierarchy. We have shown previously in simulations that atten-
tional modulation of neural activity at an intermediate processing level by as little
as 20% can effectively gate information for the subsequent recognition of multiple
objects [24].

In contrast, for a machine vision system it is beneficial to completely disregard all
information outside the focus of attention and only spend computational resources
on the attended image region. Since most computers process each image location
sequentially, attention algorithms can save computational resources by limiting pro-
cessing to the focus of attention. For the work presented in this paper, we adopt the
latter strategy by completely removing the luminance constrast outside the attended
region and thereby restricting the search for keypoints to a region that is likely to
contain an object.

Many important questions related to attention and object recognition are not ad-
dressed in this paper and remain subject of continuing research. Some of these
questions are related to the scale of objects and salient regions in the image [53].
What, for instance, happens when an object is much smaller than a selected region,
or when more than one object happen to be present in the region? It is conceivable
that in such cases the object recognition algorithm could give feedback to the atten-
tion algorithm, which would then refine the extent and shape of the region, based on
information about the identity, position, and scale of objects. This scheme may be
iterated until ambiguities are resolved, and it would lead to object-based attention.

At the other extreme, an object could be much larger than the selected regions, and
many fixations may be necessary to cover the shape of the object. In this case, vi-
sual information needs to be retained between fixations and integrated into a single
percept. When hypotheses about the object identity arise during the first few fixa-
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tions, attention may be guided to locations in the image that are likely to inform a
decision about the correctness of the hypotheses.
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