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Abstract

Active Appearance Models (AAMs) are generative models
commonly used to model faces. Another closely related
type of face models are 3D Morphable Models (3DMMs).
Although AAMs are 2D, they can still be used to model
3D phenomena such as faces moving across pose. We first
study the representational power of AAMs and show that
they can model anything a 3DMM can, but possibly re-
quire more shape parameters. We quantify the number of
additional parameters required and show that 2D AAMs
can generate model instances that are not possible with the
equivalent 3DMM. We proceed to describe how a non-rigid
structure-from-motion algorithm can be used to construct
the corresponding 3D shape modes of a 2D AAM. We then
show how the 3D modes can be used to constrain the AAM
so that it can only generate model instances that can also be
generated with the 3D modes. Finally, we propose a real-
time algorithm for fitting the AAM while enforcing the con-
straints, creating what we call a “Combined 2D+3D AAM.”

1 Introduction

Active Appearance Models (AAMs)[5] are generative
models commonly used for faces[7]. Another class of face
models are 3D Morphable Models (3DMMs)[2]. Although
AAMs and 3DMMs are very similar in many respects, one
major difference (although not the only one) between them
is that the shape component of an AAM is 2D whereas the
shape component of a 3DMM is 3D. The fact that AAMs
are 2D, however, does not mean that they do not contain 3D
information or cannot represent 3D phenomena.

We begin in Section 2 by briefly reviewing AAMs and
3DMMs emphasizing the sense in which their respective
shape models are 2D and 3D. We then study the extent to
which AAMs are 3D. Section 3 discusses the representa-
tional power of 2D shape models. We first show that (un-
der weak perspective imaging) 2D models can represent
the same 3D phenomena that 3D models can, albeit with
a larger number of parameters. We also quantify the num-
ber of extra parameters required. Because the equivalent 2D
model requires more parameters than the 3D, it must be able
to generate model instances that are impossible with the 3D
model. In Section 3.2 we give a concrete example.

Whether being able to generate these extra model in-
stances is a good thing or not is open to debate. One ar-
gument is that these model instance are “impossible” cases
of the underlying 3D object. It would therefore be prefer-
able if we could constrain the AAM parameters so that the
AAM cannot generate these “impossible” cases. Ideally we
would like the AAM to be only able to generate model in-
stances that could have been generated by the equivalent 3D
shape modes. This should improve fitting performance.

There are two other advantages of doing this, rather than
directly using the equivalent 3DMM. The first advantage is
fitting speed. Currently the fastest AAM fitting algorithms
operate at over 200 frames per second[8]. We would like
to combine the benefits of the 3D shape parameterization
(such as explicit 3D shape and pose recovery) and the fit-
ting speed of a 2D AAM. The second advantage is ease of
model construction. AAMs can be computed directly from
2D images, whereas constructing a 3DMM usually requires
3D range data[2] (although there are exceptions, e.g.[3].)

In Section 4 we describe how to constrain a 2D AAM
with the equivalent 3D shape modes to create what we call a
“Combined 2D+3D AAM.” In Section 4.1 we describe how
a non-rigid structure-from-motion algorithm can be used to
compute the equivalent 3D shape modes from an AAM. In
Section 4.2 we show how these 3D shape modes can be used
to constrain the AAM shape parameters so that the AAM
can only generate model instances that could have been
generated by the 3D shape modes. Finally, in Section 4.3
we propose a real-time fitting algorithm that enforces these
constraints. While fitting, this algorithm explicitly recovers
the 3D pose and 3D shape of the face.

2 Background

We begin with a brief review of Active Appearance Mod-
els (AAMs) [5] and 3D Morphable Models (3DMMs)[2].
We have taken the liberty to simplify the presentation and
change the notation from[5] and[2] to highlight the simi-
larities and differences between the two types of models.

2.1 Active Appearance Models: AAMs

The 2D shapeof an AAM is defined by a 2D triangulated
mesh and in particular the vertex locations of the mesh.



Mathematically, we define the shapes of an AAM as the
2D coordinates of then vertices that make up the mesh:

s =
(

u1 u2 . . . un

v1 v2 . . . vn

)
. (1)

AAMs allow linear shape variation. This means that the
shape matrixs can be expressed as a base shapes0 plus a
linear combination ofm shape matricessi:

s = s0 +
m∑

i=1

pi si (2)

where the coefficientspi are the shape parameters.
AAMs are normally computed from training data con-

sisting of a set of images with the shape mesh (usually hand)
marked on them[5]. Principal Component Analysis (PCA)
is then applied to the training meshes. The base shapes0

is the mean shape and the matricessi are the (reshaped)
eigenvectors corresponding to them largest eigenvalues.

Theappearanceof the AAM is defined within the base
meshs0. Let s0 also denote the set of pixelsu = (u, v)T

that lie inside the base meshs0, a convenient abuse of ter-
minology. The appearance of the AAM is then an image
A(u) defined over the pixelsu ∈ s0. AAMs allow linear
appearance variation. This means that the appearanceA(u)
can be expressed as a base appearanceA0(u) plus a linear
combination ofl appearance imagesAi(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (3)

where the coefficientsλi are the appearance parameters.
As with the shape, the base appearanceA0 and appearance
imagesAi are usually computed by applying PCA to the
(shape normalized) training images[5].

Although Equations (2) and (3) describe the AAM shape
and appearance variation, they do not describe how to
generate an AAMmodel instance. AAMs use a simple
2D image formation model (sometimes called a normal-
ization), a 2D similarity transformationN(u;q), where
q = (q1, . . . , q4)T contains the rotation, translation, and
scale parameters[8]. Given the AAM shape parameters
p = (p1, . . . , pm)T, Equation (2) is used to generate the
shape of the AAMs. The shapes is then mapped into the
image with the similarity transformation to giveN(s;q),
another convenient abuse of terminology. Similarly, Equa-
tion (3) is used to generate the AAM appearanceA(u) from
the AAM appearance parametersλ = (λ1, . . . , λl)T. The
AAM model instance with shape parametersp, image for-
mation parametersq, and appearance parametersλ is then
created by warping the appearanceA(u) from the base
meshs0 to the model shape mesh in the imageN(s;q).
In particular, the pair of meshess0 andN(s;q) define a

piecewise affine warp froms0 to N(s;q) which we denote
W(u;p;q). For each triangle ins0 there is a correspond-
ing triangle inN(s;q) and each pair of triangles defines a
unique affine warp from one set of vertices to the other.

2.2 3D Morphable Models: 3DMMs

The3D shapeof a 3DMM is defined by a 3D triangulated
mesh and in particular the vertex locations of the mesh.
Mathematically, we define the shapes of a 3DMM as the
3D coordinates of then vertices that make up the mesh:

s =

 x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

 . (4)

3DMMs allow linear shape variation. The shape matrixs
can be expressed as a base shapes0 plus a linear combina-
tion of m shape matricessi:

s = s0 +
m∑

i=1

pi si (5)

where the coefficientspi are the shape parameters.
3DMMs are normally computed from training data con-

sisting of a number of range images with the mesh vertices
(hand) marked in them[2]. PCA is then applied to the 3D
coordinates of the training meshes. The base shapes0 is the
mean shape and the matricessi are the (reshaped) eigenvec-
tors corresponding to the largest eigenvalues.

Theappearanceof a 3DMM is defined within a 2D tri-
angulated mesh that has the same topology (vertex connec-
tivity) as the base meshs0. Let s∗0 denote the set of pixels
u = (u, v)T that lie inside this 2D mesh. The appearance is
then an imageA(u) defined overu ∈ s∗0. 3DMMs also al-
low linear appearance variation. The appearanceA(u) can
be expressed as a base appearanceA0(u) plus a linear com-
bination ofl appearance imagesAi(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (6)

where the coefficientsλi are the appearance parameters. As
with the shape, the base appearanceA0 and the appearance
imagesAi are usually computed by applying PCA to the
texture components of the training range images, appropri-
ately warped onto the 2D triangulated meshs∗0 [2].

To generate a 3DMMmodel instancewe need an image
formation model to convert the 3D shapes into a 2D mesh.
As in [9], we use the weak perspective model (which is an
adequate approximation unless the face is very close to the
camera) defined by the matrix:(

ix iy iz
jx jy jz

)
(7)



and the offset of the origin(ox, oy)T. The two vectors
i = (ix, iy, iz) andj = (jx, jy, jz) are the projection axes.
We require that the projection axes are equal length and or-
thogonal; i.e. we require thati · i = ixix + iyiy + iziz =
jxjx + jyjy + jzjz = j · j andi · j = ixjx + iyjy + izjz = 0.
The result of imaging the 3D pointx = (x, y, z)T is:

u = Px =
(

ix iy iz
jx jy jz

)
x +

(
ox

oy

)
. (8)

Note that the projectionP has 6 degrees of freedom which
can be mapped onto a 3D pose (yaw, pitch, roll), a 2D trans-
lation, and a scale. The 3DMM model instance is then com-
puted as follows. Given the shape parameterspi, the 3D
shapes is computed using Equation (4). Each 3D vertex
(xi, yi, zi)T is then mapped to a 2D vertex using the imag-
ing model in Equation (8). (Note that during this process the
visibility of the triangles in the mesh should be respected.)
The appearance is then computed using Equation (6) and
warped onto the 2D mesh using the piecewise affine warp
defined by the mapping from the 2D vertices ins∗0 to the
corresponding 2D vertices computed by applying the image
formation model (Equation (8)) to the 3D shapes.

2.3 Similarities and Differences

AAMs and 3DMMs are similar in many ways. They both
consist of a linear shape model and a linear appearance
model. In particular, Equations (2) and (5) are almost iden-
tical. Equations (3) and (6) are also almost identical. The
main difference between the two types of model is that the
shape component of the AAM is 2D (see Equation (1))
whereas that of the 3DMM is 3D (see Equation (4)).

Note, however, that there are other differences between
AAMs [5] and 3DMMs[2]. (1) 3DMMs are usually con-
structed to be denser; i.e. consist of more triangles. (2) Be-
cause of their 3D shape and density, 3DMMs can also use
the surface normal in their appearance model. (3) Because
of their 3D shape, 3DMMs can model occlusion, whereas
2D AAMs cannot. In this paper, we ignore these differences
and focus on the dimensionality of the shape model.

3 Representational Power

We now study the representational power of 2D and 3D
shape models. We first show that a 2D shape model can
represent anything a 3D model can. We then show that 2D
models can generate many model instances that are not pos-
sible with an otherwise equivalent 3D model.

3.1 Can 2D Shape Models Represent 3D?

Given a 3D shape model, is there a 2D shape model that can
generate the same set of model instances? In this section,

we show that the answer to this question is yes.
The shape variation of a 2D model is described by Equa-

tion (2) andN(u;q). That of an 3D model is described by
Equations (5) and (8). We can ignore the offset of the origin
(ox, oy)T in the weak perspective model for the 3D model
because this offset corresponds to a translation which can
be modeled by the 2D similarity transformationN(u;q).
The 2D shape variation of the 3D model is then given by:(

ix iy iz
jx jy jz

)
·

(
s0 +

m∑
i=1

pi si

)
(9)

where(ix, iy, iz), (jx, jy, jz), and the 3D shape parameters
pi vary over their allowed values. The projection matrix can
be expressed as the sum of 6 matrices:(

ix iy iz
jx jy jz

)
= ix

(
1 0 0
0 0 0

)
+

iy

(
0 1 0
0 0 0

)
+ . . . + jz

(
0 0 0
0 0 1

)
. (10)

Equation (9) is therefore a linear combination of:(
1 0 0
0 0 0

)
· si,

(
0 1 0
0 0 0

)
· si, . . . , (11)

for i = 0, 1, . . . ,m, and similarly for the other 4 constant
matrices in Equation (10). The linear shape variation of the
3D model can therefore be represented by an appropriate set
of 2D shape vectors. For example:

s1 =
(

1 0 0
0 0 0

)
· s0, s2 =

(
1 0 0
0 0 0

)
· s1, . . .

(12)
and so on. In total as many asm = 6× (m + 1) 2D shape
vectors may be needed to model the same shape variation as
the 3D model with onlym shape vectors. Although many
more shape vectors may be needed, the main point is that
2D model can represent any phenomena that the 3D model
can. (Note that although more than 6 times as many shape
vectors may be needed to model the same phenomenon, in
practice often not that many are required.)

3.2 Do 2D Models Generate Invalid Cases?

If it takes 6 times as many parameters to represent a certain
phenomenon with an 2D model than it does with the corre-
sponding 3D model, the 2D model must be able to gener-
ate a large number of model instances that are impossible to
generate with the 3D model. In effect, the 2D model has too
much representational power. It describes the phenomenon
in question, plus a variety of other shapes. If the parameters
of the 2D model are chosen so that the orthogonality con-
straints on the corresponding 3D projection axesi andj do
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Figure 1:A scene consisting of a static cube and3 points moving
along fixed directions. (a) The base configuration. (b) The cube
viewed from a different direction with the 3 points moved.

not hold, the 2D model instance is not realizable with the
3D model. An example of this is presented in Figure 1.

The scene in Figure 1 consists of a static cube (of which
7 vertices are visible) and3 moving points (marked with a
diamond, a triangle, and a square.) The3 points can move
along the three axes at the same, non-constant speed. The
3D shape of the scenes is composed of a base shapes0

and a single 3D shape vectors1. The base shapes0 corre-
spond to the static cube and the initial locations of the three
moving points. The 3D shape vectors1 corresponds to the
motion of the three points (diamond, triangle, square.)

We randomly generated60 sets of shape parametersp1

(see Equation (5)) and camera projection matricesP (see
Equation (8)) and synthesized the 2D shapes of60 3D
model instances. We then computed the 2D shape model
by performing PCA on the60 2D shapes. The result con-
sists of12 shape vectors, confirming the result above that as
many as6× (m + 1) 2D shape vectors might be required.

The resulting 2D shape model can generate a large num-
ber of shapes that are impossible to generate with the 3D
model. One concrete example is the base shape of the 2D
models0. In our experiment,s0 turns out to be:s0 =(
−0.194 −0.141 −0.093 −0.146 −0.119

0.280 0.139 0.036 0.177 −0.056

−0.167 −0.172 −0.027 0.520 0.539
0.048 0.085 −1.013 0.795 −0.491

)
. (13)

We now need to show thats0 is not a 3D model instance.
It is possible to show thats0 can beuniquelydecomposed
into: s0 = P0s0 + P1s1 =(

0.053 0.026 0.048
−0.141 0.091 −0.106

)
s0

+
(

0.087 0.688 0.663
−0.919 0.424 −0.473

)
s1. (14)

It is easy to see thatP0 is not a constant multiple ofP1, and
neither ofP0 andP1 are legitimate weak perspective matri-
ces (i.e. composed of two equal length, orthogonal vectors).
Therefore, we have shown that the 2D model instances0 is
not a valid 3D model instance.

4 Combined 2D+3D AAMs

We now describe how to constrain an AAM with the equiv-
alent 3D shape modes and create what we call a “Combined
2D+3D AAM.” We also derive a real-time fitting algorithm
for a Combined 2D+3D AAM that explicitly recovers the
3D pose and 3D shape of the face.

4.1 Computing 3D Shape from an AAM

If we have a 2D AAM, a sequence of imagesIt(u) for t =
0, . . . , N , and have tracked the face through the sequence
with the AAM, then denote the AAM shape parameters at
time t by pt = (pt

1, . . . , p
t
m)T. Using Equation (2) we can

compute the 2D AAM shape vectorst for each timet:

st =
(

ut
1 ut

2 . . . ut
n

vt
1 vt

2 . . . vt
n

)
. (15)

A variety of non-rigid structure-from-motion algorithms
have been proposed to convert the tracked feature points
in Equation (15) into 3D linear shape modes. Bregler et
al. [4] proposed a factorization method to simultaneously
reconstruct the non-rigid shape and camera matrices. This
method was extended to a trilinear optimization approach
in [11]. The optimization process involves three types of
unknowns, shape vectors, shape parameters, and projection
matrices. At each step, two of the unknowns are fixed and
the third refined. Brand[3] proposed a similar non-linear
optimization method that used an extension of Bregler’s
method for initialization. All of these methods only use the
usual orthonormality constraints on the projection matrices
[10]. In [12] we proved that only enforcing the orthonor-
mality constraints is ambiguous and demonstrate that it can
lead to an incorrect solution. We now outline how our algo-
rithm [12] can be used to compute 3D shape modes from an
AAM. (Any of the other algorithms could be used instead,
although with worse results.) We stack the 2D AAM shape
vectors in allN images into a measurement matrix:

W =


u0

1 u0
2 . . . u0

n

v0
1 v0

2 . . . v0
n

...
...

...
...

uN
1 uN

2 . . . uN
n

vN
1 vN

2 . . . vN
n

 . (16)

If this data can be explained by a set of 3D linear shape
modes, thenW can be represented:W = MB =

P0 p0
1 P0 . . . p0

m P0

P1 p1
1 P1 . . . p1

m P1

...
...

...
...

PN pN
1 PN . . . pN

m PN


 s0

...
sm

 (17)



whereM is a2(N +1)×3(m + 1) scaled projection matrix
andB is a3(m + 1) × n shape matrix (setting the number
of 3D verticesn to equal the number of AAM verticesn.)
Sincem is the number of 3D shape vectors, it is usually
small and the rank ofW is at most3(m + 1).

We perform a Singular Value Decomposition (SVD) on
W and factorize it into the product of a2(N+1)×3(m + 1)
matrixM̃ and a3(m+1)×n matrixB̃. This decomposition
is not unique, and is only determined up to a linear transfor-
mation. Any non-singular3(m + 1) × 3(m + 1) matrix G
and its inverse could be inserted betweenM̃ andB̃ and their
product would still equalW . The scaled projection matrix
M and the shape vector matrixB are then given by:

M = M̃ ·G, B = G−1 · B̃ (18)

whereG is the corrective matrix. In[12] we proposed ad-
ditional basisconstraints to computeG. See[12] for the
details. OnceG has been determined,M andB can be re-
covered. In summary, the 3D shape modes have been com-
puted from the 2D AAM shape modes and the 2D AAM
tracking results. Note that the tracking data is needed.

4.1.1 Experimental Results

We illustrate the computation of the 3D shape modes from
an AAM in Figure 2. We first constructed an AAM for 5
people using 20 training images of each person. In Fig-
ures 2(a–c) we include the AAM mean shapes0 and the
first 2 (of 17) AAM shape variation modess1 ands2. Fig-
ures 2(d–f) illustrate the mean AAM appearanceλ0 and the
first 2 (of 42) AAM appearance variation modesλ1 andλ2.
The AAM is then fit to short videos (in total 900 frames) of
each of the 5 people and the results used to compute the 3D
shape modes. The mean shapes0 and first 2 (of 15) shape
modess1 ands2 are illustrated in Figures 2(g–i).

4.2 Constraining an AAM with 3D Shape

The 3D shape modes just computed are a 3D model of the
same phenomenon that the AAM modeled. We now de-
rive constraints on the 2D AAM shape parametersp =
(p1, . . . , pm) that force the AAM to only move in a way
that is consistent with the 3D shape modes. If we denote:

P

 x1 . . . xn

y1 . . . yn

z1 . . . zn

 =

P

 x1

y1

z1

 . . .P

 xn

yn

zn


(19)

then the 2D shape variation of the 3D shape modes over all
imaging conditions is:

P

(
s0 +

m∑
i=1

pi si

)
(20)

(a) AAM s0 (b) AAM s1 (c) AAM s2

(d) AAM λ0 (e) AAM λ1 (f) AAM λs2

(g) 3D Shapes0 (h) 3D Shapes1 (i) 3D Shapes2

Figure 2: An example of the computation of 3D shape modes
from an AAM. The figure shows the AAM shape (a–c) and ap-
pearance (d–f) variation, and the first three 3D shape modes (g–i).

whereP andp = (pi, . . . , pm) vary over their allowed val-
ues. (Note thatP is a functionP = P(ox, oy, i, j) and so it
is the parametersox, oy, i, j that are actually varying.)

The constraints on the AAM shape parametersp that we
seek to impose are that there exist legitimate values ofP
andp such that the 2D projected 3D shape equals the 2D
shape of the AAM. These constraints can be written:

min
P,p

∥∥∥∥∥N
(

s0 +
m∑

i=1

pi si;q

)
−P

(
s0 +

m∑
i=1

pi si

)∥∥∥∥∥
2

= 0

(21)
where‖ · ‖2 denotes the sum of the squares of the elements
of the matrix. The only quantities in Equation (21) that are
not either known (m, m, si, si) or optimized (P, p) arep,
q. Equation (21) is therefore a set of constraints onp, q.

4.3 Fitting with 3D Shape Constraints

We now briefly outline our algorithm to fit an AAM while
enforcing these constraints. In particular, we extend our
real-time AAM fitting algorithm[8]. The result is an algo-
rithm that turns out to be even faster than the 2D algorithm.
The goal of AAM fitting[8] is to minimize:

∑
u∈s0

[
A0(u) +

l∑
i=1

λiAi(u)− I(W(u;p;q))

]2

(22)

simultaneouslywith respect to the AAM shapep, appear-
anceλ, and normalizationq parameters. We impose the



constraints in Equation (21) as soft constraints on Equa-
tion (22) with a large weightK; i.e. we re-pose AAM fitting
as simultaneously minimizing:

∑
u∈s0

[
A0(u) +

l∑
i=1

λiAi(u)− I(W(u;p;q))

]2

+

K

∥∥∥∥∥N
(

s0 +
m∑

i=1

pi si;q

)
−P

(
s0 +

m∑
i=1

pi si

)∥∥∥∥∥
2

(23)

with respect top, q, λ, P, andp. In the limit K → ∞
the constraints become hard constraints. In practice, a suit-
ably large value forK results in the system being solved
approximately as though the constraints are hard.

The technique in[8] (proposed in[6]) to sequentiallyop-
timize for the AAM shapep, q, and appearanceλ parame-
ters can also be used on the above equation. We optimize:

‖A0(u)− I(W(u;p;q))‖2span(Ai)⊥
+

K

∥∥∥∥∥N
(

s0 +
m∑

i=1

pi si;q

)
−P

(
s0 +

m∑
i=1

pi si

)∥∥∥∥∥
2

(24)

with respect top, q, P, andp, where‖ · ‖2span(Ai)⊥
denotes

the square of the L2 norm of the vector projected into or-
thogonal complement of the linear subspace spanned by the
vectorsA1, . . . , Al. Afterwards, we solve for the appear-
ance parameters using the linear closed-form solution:

λi =
∑
u∈s0

Ai(u) · [I(W(u;p;q))−A0(u)] (25)

where the parametersp, q are the result of the previous
optimization. (Note that Equation (25) assumes that the ap-
pearance vectorsAi(u) are orthonormal.) The optimality
criterion in Equation (24) is of the form:

‖A0(u)− I(W(u;p;q))‖2span(Ai)⊥
+ F (p;q;P;p).

(26)
In a recent journal paper[8] we showed how to minimize
‖A0(u)− I(W(u;p;q))‖2span(Ai)⊥

using theinverse com-
positionalalgorithm; i.e. by iteratively minimizing:

‖A0(W(u;∆p;∆q))− I(W(u;p;q))‖2span(Ai)⊥
(27)

with respect to∆p, ∆q and then updating the current es-
timate of the warp usingW(u;p;q) ← W(u;p;q) ◦
W(u;∆p;∆q)−1. When using the inverse compositional
algorithm we effectively change[1] the incremental updates
to the parameters from(∆p,∆q) to J(∆p,∆q) where:

W(u; (p,q) + J(∆p,∆q)) ≈
W(u;p;q) ◦W(u;∆p;∆p)−1 (28)

to a first order approximation, andJ is an(m+4)×(m+4)
matrix. In generalJ depends on the warp parameters(p,q)

but can easily be computed. Equation (28) means that to
optimize the expression in Equation (26) using the inverse
compositional algorithm, we must iteratively minimize:

G(∆p,∆q) + F ((p,q)+J(∆p,∆q);P+∆P;p+∆p)
(29)

simultaneously with respect to∆p, ∆q, ∆P, and ∆p,
whereG(∆p,∆q) is the expression in Equation (27).

The reason for using the inverse compositional algorithm
is that the Gauss-Newton Hessian of the expression in Equa-
tion (27) is a constant and so can be precomputed[8]. It is
easy to show (see[1] for the details) that the Gauss-Newton
Hessian of the expression in Equation (29) is the sum of the
Hessian forG and the Hessian forF . (This relies on the two
terms each being a sum of squares.) Similarly, the Gauss-
Newton steepest-descent parameter updates for the entire
expression are the sum of the updates for the two terms sep-
arately. An efficient optimization algorithm can therefore
be built based on the inverse compositional algorithm.

The Hessian forG is precomputed as in[8]. The Hes-
sian for F is computed in the online phase and added to
the Hessian forG. Since nothing inF depends on the im-
ages, the Hessian forF can be computed very efficiently.
The steepest-descent parameter updates forG are also com-
puted exactly as in[8] and added to the steepest-descent
parameter updates forF . The final Gauss-Newton parame-
ter updates can then be computed by inverting the combined
Hessian and multiplying by the combined steepest-descent
parameter updates. The warp parametersp,q are then
updatedW(u;p;q) ← W(u;p;q) ◦W(u;∆p;∆q)−1

and the other parameters additivelyP ← P + ∆P and
p ← p + ∆p. One minor detail is the fact thatG and
F have different parameter sets to be optimized,(∆p,∆q)
and(∆p;∆q;∆P;∆p). The easiest way to deal with this
is to think of G as a function of(∆p;∆q;∆P;∆p). All
terms in both the Hessian and the steepest-descent parame-
ter updates that relate to either∆P or ∆p are set to zero.

4.3.1 Experimental Results

In Figure 3 we include an example of our algorithm fitting
to a single input image. Figure 3(a) displays the initial con-
figuration, Figure 3(b) the results after 30 iterations, and
Figure 3(c) the results after the algorithm has converged. In
each case, we display the input image with the current es-
timate of the 3D shape mesh overlayed in white. (The 3D
shape is projected onto the image with the current camera
matrix.) In the top right, we also include renderings of the
3D shape from two different viewpoints. In the top left we
display estimates of the 3D pose extracted from the current
estimate of the weak perspective camera matrixP. We also
display the current estimate of the 2D AAM shape projected
onto the input image as blue dots. Note that as the AAM is
fit, we simultaneously estimate the 3D shape (white mesh),



(a) Initialization (b) After 30 Iterations (c) Converged

Figure 3: An example of our algorithm fitting to a single image. We display the 3D shape estimate (white) projected onto the original
image and also from a couple of other viewpoints (top right). We also display the 2D AAM shape (blue dots.)

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

Figure 4: The results of using our algorithm to track a face in a
180 frame video sequence by fitting the model to each frame.

the 2D shape (blue dots), and the camera matrix/3D pose
(top left). In the example in Figure 3, we start the AAM
relatively far from the correct solution and so a relatively
large number of iterations are required. Averaged across all
frames in a typical sequence, only 6 iterations per image
were required for convergence. In Figure 4 we include 4
frames of our algorithm being used to track a face in a 180
frame video by fitting the model successively to each frame.

A useful feature of the “2D+3D AAM” is the ability to
render the 3D model from novel viewpoints. Figure 5 shows
an example image and the 2D+3D AAM fit result in the
top row. The bottom left shows the 3D shape and appear-
ance reconstruction from the model parameters. The bot-
tom right shows model reconstructions from two new view-
points. Note the sides of the face appear flat. The current
mesh used to model the face does not include any points on
the cheeks (there are no reliable landmarks for hand place-
ment) so there is no depth information there.

Finally we compare the fitting speed of 2D+3D AAMs
with that of 2D AAMs. See Table 1. Our 2D AAM fitting

algorithm[8] operates at 4.9 frames per second in Matlab
and over 200 frames per second in C, both on a 3GHz Dual
Pentium 4. Currently we have only had time to implement
the 2D+3D AAM algorithm in Matlab. In Matlab the new
algorithm runs at 6.1 frames per second. Note however, that
the time per iteration for the 2D algorithm is approximately
20% less than for the 2D+3D algorithm but it requires more
iterations to reach the same level of convergence. Assum-
ing the improvement in fitting speed will be the same in C
(there is no reason to suspect otherwise, the new code is
very similar in style to the old), the C implementation of
the 2D+3D algorithm should run at well over 250 frames
per second (and faster than the 2D code.)

5 Conclusion

5.1 Summary

In Section 3 we compared the shape representational power
of 2 of the most popular face models: Active Appearance
Models (AAMs) [5] and 3D Morphable Models (3DMMs)
[2]. Even though AAMs are 2D whereas 3DMMs are 3D,
we showed that AAMs can represent any phenomena that
3DMMs can, albeit possibly at the expense of requiring
up to 6 times as many shape parameters. Because they, in
general, have more shape parameters, AAMs can generate
many model instances that are not possible with the corre-
sponding 3DMMs. One interpretation of this fact is that the
AAM has too much representational power and can gener-
ate “impossible” instances that are not physically realizable.

In Section 4 we first showed how to compute the equiv-
alent 3D shape modes of a 2D AAM. We used a linear
non-rigid structure-from-motion algorithm[12] that does
not suffer from the local minima that other non-linear algo-
rithms do. We then showed how the 3D shape modes can be
used to impose constraints on the 2D AAM parameters that
force it to generate only model instances that can also be
generated with the 3D shape modes. Finally, we extended
our real-time AAM fitting algorithm[8] to impose these



(a) (b)

(c) (d)
Figure 5: 2D+3D AAM model reconstruction. (a) shows the
input image, (b) shows the tracked result, (c) the 2D+3D AAM
model reconstruction and (d) shows two new view reconstructions.

constraints. While fitting, this algorithm: (1) ensures that
the model instance is realizable with the 3D shape modes,
and (2) explicitly recovers the 3D pose and 3D shape of the
face. Combining these steps, we have extended AAMs to
what we call “Combined 2D+3D AAMs.”

5.2 Discussion and Future Work

We have tried to combine the best features of AAMs and
3DMMs: real-time fitting (AAMs) and a parameterization
consisting of a camera matrix (including 3D pose) and 3D
shape (3DMMs). In particular, we started with a AAM and
computed 3D shape modes. It is also possible to start with
a 3DMM, compute 2D shape modes, and then fit the 2D
AAM in real-time while imposing the equivalent constraints
that the 2D AAM instance is a valid 3DMM instance.

In constraining an AAM with the corresponding 3D
shape modes, we increased the number of parameters. Al-
though somewhat counter-intuitive, increasing the number
of parameters in this way actually reduces the flexibility of
the model because the AAM parameters and the 3D shape
parameters are tightly coupled. We have presented results
which show that this reduced flexibility can lead to faster
convergence. More experiments are needed and we plan to
quantitatively compare the robustness and speed of fitting
2D AAMs and 2D+3D AAMs in a future paper.

We have not discussed occlusion in this paper so that
we can focus on the dimensionality of the shape model.
The treatment of occlusion is another major difference be-
tween AAMs and 3DMMs. AAMs do not model occlusion
whereas 3DMMs do. Note, however, that once we have an
explicit 3D shape and pose it is relatively straight-forward
to model the self occlusion of the model. In future papers,

Table 1: Fitting speed on a 3GHz Dual Pentium 4 Xeon. These
results show number of frames per second (fps) or number of iter-
ations per second (ips) for an AAM with 17 2D shape parameters,
42 appearance parameters, and 30,000 color pixels. The 2D+3D
AAM has an extra 15 3D shape and 5 camera parameters.

2D AAM Fitting 2D+3D AAM Fitting
Matlab 87 ips 71 ips
Matlab 4.9 fps 6.1 fps

C 230 fps ≈286 fps (est.)

we plan to extend our real-time 2D+3D AAM fitting algo-
rithm to cope with both self and other forms of occlusion.
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