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Abstract Whether being able to generate these extra model in-

) ) stances is a good thing or not is open to debate. One ar-
Active Appearance Models (AAMs) are generative models gyment is that these model instance are “impossible” cases
commonly used to model faces. Another closely related sf the underlying 3D object. It would therefore be prefer-
type of face models are 3D Morphable Models (3DMMS). gpje if we could constrain the AAM parameters so that the
Although AAMs are 2D, they can still be used to model AaM cannot generate these “impossible” cases. Ideally we
3D phenomena such as faces moving across pose. We firsfoy|d like the AAM to be only able to generate model in-
study the representational power of AAMs and show that stances that could have been generated by the equivalent 3D
they can model anything a 3DMM can, but possibly re- shape modes. This should improve fitting performance.
quire more shape parameters. We quantify the number of - There are two other advantages of doing this, rather than
additional parameters required and show that 2D AAMS girectly using the equivalent 3DMM. The first advantage is
can generate model instances that are not possible with theitiing speed. Currently the fastest AAM fitting algorithms
equivalent 3DMM. We proceed to describe how a non-rigid operate at over 200 frames per secé8ld We would like
structure-from-motion algorithm can be used to construct i5 combine the benefits of the 3D shape parameterization

the corresponding 3D shape modes of a 2D AAM. We then (g, as explicit 3D shape and pose recovery) and the fit-
show how the 3D modes can be used to constrain the AAM ting speed of a 2D AAM. The second advantage is ease of

so that it can_only generate model_ instances that can also bg,qdel construction. AAMs can be computed directly from

generated with the 3D modes. Finally, we propose a real->p jmages, whereas constructing a 3DMM usually requires

tlmg algorlthm for fitting the AAM whlle.enforcmg thecon- 3p range datf2] (although there are exceptions, 3j.)

straints, creating what we call a “Combined 2D+3D AAM.” In Section 4 we describe how to constrain a 2D AAM
with the equivalent 3D shape modes to create what we call a

. “Combined 2D+3D AAM.” In Section 4.1 we describe how

1 Introduction a non-rigid structure-from-motion algorithm can be used to
compute the equivalent 3D shape modes from an AAM. In

Active Appearance Models (AAMs]5] are generative  Section 4.2 we show how these 3D shape modes can be used

models commonly used for facEd. Another class of face  to constrain the AAM shape parameters so that the AAM

models are 3D Morphable Models (3DMMs]. Although can only generate model instances that could have been

AAMs and 3DMMs are very similar in many respects, one generated by the 3D shape modes. Finally, in Section 4.3

major difference (although not the only one) between them we propose a real-time fitting algorithm that enforces these

is that the shape component of an AAM is 2D whereas the constraints. While fitting, this algorithm explicitly recovers

shape component of a 3DMM is 3D. The fact that AAMs the 3D pose and 3D shape of the face.

are 2D, however, does not mean that they do not contain 3D

information or cannot represent 3D phenomena.

We begin in Section 2 by briefly reviewing AAMs and 2 Background

3DMMs emphasizing the sense in which their respective

shape models are 2D and 3D. We then study the extent to/Ve begin with a brief review of Active Appearance Mod-

which AAMs are 3D. Section 3 discusses the representa-€ls (AAMs) [5] and 3D Morphable Models (3DMM4p].

tional power of 2D shape models. We first show that (un- We have taken the liberty to simplify the presentation and

der weak perspective imaging) 2D models can representchange the notation froifd] and[2] to highlight the simi-

the same 3D phenomena that 3D models can, albeit withlarities and differences between the two types of models.

a larger number of parameters. We also quantify the num-

ber of extra_parameters required. Because the_ equivalent2[21 Active Appearance Models: AAMs

model requires more parameters than the 3D, it must be able

to generate model instances that are impossible with the 3DThe 2D shapeof an AAM is defined by a 2D triangulated

model. In Section 3.2 we give a concrete example. mesh and in particular the vertex locations of the mesh.



Mathematically, we define the shapef an AAM as the
2D coordinates of the vertices that make up the mesh:
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AAMs allow linear shape variation. This means that the
shape matrix can be expressed as a base shgpglus a
linear combination ofn shape matrices;:
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where the coefficients; are the shape parameters.
AAMs are normally computed from training data con-

S
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piecewise affine warp frors, to N(s; q) which we denote
W(u; p;q). For each triangle is, there is a correspond-
ing triangle inN(s; q) and each pair of triangles defines a
unique affine warp from one set of vertices to the other.

2.2 3D Morphable Models: 3DMMs

The 3D shapeof a 3DMM is defined by a 3D triangulated
mesh and in particular the vertex locations of the mesh.
Mathematically, we define the shapef a 3DMM as the
3D coordinates of the vertices that make up the mesh:

1 X2 Ty
S= 1y ¥ Yn (4)
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sisting of a set of images with the shape mesh (usually hand)

marked on thenb5]. Principal Component Analysis (PCA)
is then applied to the training meshes. The base shape
is the mean shape and the matrisgsare the (reshaped)
eigenvectors corresponding to thelargest eigenvalues.

The appearanceof the AAM is defined within the base
meshs,. Lets, also denote the set of pixels = (u,v)T
that lie inside the base mesh, a convenient abuse of ter-
minology. The appearance of the AAM is then an image
A(u) defined over the pixela € sg. AAMs allow linear
appearance variation. This means that the appearéfice
can be expressed as a base appeardgte) plus a linear
combination ofl appearance images; (u):

l
A(u) = Ag(u) + > X Ai(u) ®3)
i=1

where the coefficients,; are the appearance parameters.
As with the shape, the base appearadgeand appearance
imagesA; are usually computed by applying PCA to the
(shape normalized) training imagks.

Although Equations (2) and (3) describe the AAM shape

3DMMs allow linear shape variation. The shape ma#ix
can be expressed as a base shgpaus a linear combina-
tion of mr shape matrices;:

®)

where the coefficients, are the shape parameters.

3DMMs are normally computed from training data con-
sisting of a number of range images with the mesh vertices
(hand) marked in therf2]. PCA is then applied to the 3D
coordinates of the training meshes. The base siajthe
mean shape and the matriGggsre the (reshaped) eigenvec-
tors corresponding to the largest eigenvalues.

The appearanceof a 3DMM is defined within a 2D tri-
angulated mesh that has the same topology (vertex connec-
tivity) as the base mesdy. Lets; denote the set of pixels
u = (u,v)" that lie inside this 2D mesh. The appearance is
then an imaged(u) defined ovemn € s;. 3DMMs also al-
low linear appearance variation. The appearahe) can
be expressed as a base appearahgea) plus a linear com-
bination of/ appearance images (u):

and appearance variation, they do not describe how to

generate an AAMmodel instance. AAMs use a simple
2D image formation model (sometimes called a normal-
ization), a 2D similarity transformatioiN(u;q), where

q = (q1,...,q4)T contains the rotation, translation, and
scale parameterk8]. Given the AAM shape parameters
p=(p1,---
shape of the AAMs. The shape is then mapped into the
image with the similarity transformation to gi¥(s; q),
another convenient abuse of terminology. Similarly, Equa-
tion (3) is used to generate the AAM appearadc¢ea) from

the AAM appearance parametexs= (\y,...,\;)T. The
AAM model instance with shape parametgrsimage for-
mation parameterg, and appearance parametarss then
created by warping the appearand¢u) from the base
meshs, to the model shape mesh in the imalyés; q).

In particular, the pair of meshes andN(s; q) define a

,pm) T, Equation (2) is used to generate the .

Z(u) = Zo(u) + Xi Zi(u) (6)

-

1=1

where the coefficients; are the appearance parameters. As
with the shape, the base appearadgend the appearance
imagesA,; are usually computed by applying PCA to the
texture components of the training range images, appropri-
ately warped onto the 2D triangulated m&gt2].

To generate a 3DMMnodel instanceve need an image
formation model to convert the 3D shap@to a 2D mesh.
As in [9], we use the weak perspective model (which is an
adequate approximation unless the face is very close to the
camera) defined by the matrix:

(
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and the offset of the origirfo,,0,)T. The two vectors  we show that the answer to this question is yes.

i= (ig,dy,7,) andj = (jz, jy, i) are the projection axes. The shape variation of a 2D model is described by Equa-
We require that the projection axes are equal length and orion (2) andN(u; q). That of an 3D model is described by
thogonal; i.e. we require that i = 9,1, + 98, + i,i, = Equations (5) and (8). We can ignore the offset of the origin
Juju+iydy+izd- =j-jandi-j = iyjz +iyjy +i.j. = 0. (0,0,)" in the weak perspective model for the 3D model
The result of imaging the 3D poist = (z,y, )T is: because this offset corresponds to a translation which can

) ) ) be modeled by the 2D similarity transformatidf(u; q).
u=Px = < ety e ) X + ( Oz ) . (8)  The 2D shape variation of the 3D model is then given by:
Jz Jy Iz

Oy
Note that the projectio®® has 6 degrees of freedom which o Ay L\ S0+ i, - ©)
can be mapped onto a 3D pose (yaw, pitch, roll), a 2D trans- Jz Jy J- 0 — Pi i

lation, and a scale. The 3DMM model instance is then com-

puted as follows. Given the shape paramefgrghe 3D where(i,, iy, i.), (o jy, j»), and the 3D shape parameters
shapes is computed using Equation (4). Each 3D vertex 7, vary over their allowed values. The projection matrix can
(zi,yi,2)T is then mapped to a 2D vertex using the imag- be expressed as the sum of 6 matrices:

ing model in Equation (8). (Note that during this process the

visibility of the triangles in the mesh should be respected.) ( Iy Gy s ) — < 1 00 > +

The appearance is then computed using Equation (6) and \ jz Jjy J- L0 00

warped onto the 2D mesh using the piecewise affine warp _ 01 0 . 00 0

defined by the mapping from the 2D verticessito the iy ( 00 0 > +... 4+ ( 00 1 > (10)

corresponding 2D vertices computed by applying the image

formation model (Equation (8)) to the 3D shape Equation (9) is therefore a linear combination of:
Somilarit ; 1 0 0 _ 01 0 _

2.3 Similarities and Differences < 00 0 ) -S4, ( 00 0 > ‘Siy..., (11)

AAMs and 3DMMs are similar in many ways. They both
consist of a linear shape model and a linear appearancdor ¢ = 0,1,...,m, and similarly for the other 4 constant
model. In particular, Equations (2) and (5) are almost iden- matrices in Equation (10). The linear shape variation of the
tical. Equations (3) and (6) are also almost identical. The 3D model can therefore be represented by an appropriate set
main difference between the two types of model is that the Of 2D shape vectors. For example:
shape component of the AAM is 2D (see Equation (1))
whereas that of the 3DMM is 3D (see Equation (4)). s; = ( 100 > -8, Sg = < 100 > -81,...

Note, however, that there are other differences between 000 000 (12)
AAMs [5] and 3DMMsJ[2]. (1) 3DMMs are usually con- ‘and so on. In total as many as— 6 x (7 + 1) 2D shape

structed to be denser; i.e. consist of more triangles. (2) Be vectors may be needed to model the same shape variation as
cause of their 3D shape and density, 3DMMs can also usethe 3D mogel with onlvim shape vectors A|th0F:,I h man
the surface normal in their appearance model. (3) Because ym P ' 9 y

of their 3D shape, 3DMMs can model occlusion, whereas r2n[()) rgjg;pcea\n/erztorr:szriyaze nﬁgggg{et:ae tr;;['?hre)ogg ';;22}
2D AAMs cannot. In this paper, we ignore these differences b yp

. : . can. (Note that although more than 6 times as many shape
and focus on the dimensionality of the shape model. .
vectors may be needed to model the same phenomenon, in

practice often not that many are required.)
3 Representational Power

_ 3.2 Do 2D Models Generate Invalid Cases?
We now study the representational power of 2D and 3D

shape models. We first show that a 2D shape model canlf it takes 6 times as many parameters to represent a certain
represent anything a 3D model can. We then show that 2Dphenomenon with an 2D model than it does with the corre-
models can generate many model instances that are not posponding 3D model, the 2D model must be able to gener-

sible with an otherwise equivalent 3D model. ate a large number of model instances that are impossible to
generate with the 3D model. In effect, the 2D model has too
3.1 Can 2D Shape Models Represent 3D? much representational power. It describes the phenomenon

in question, plus a variety of other shapes. If the parameters
Given a 3D shape model, is there a 2D shape model that carf the 2D model are chosen so that the orthogonality con-
generate the same set of model instances? In this sectiorstraints on the corresponding 3D projection akasdj do



4 Combined 2D+3D AAMs

We now describe how to constrain an AAM with the equiv-
alent 3D shape modes and create what we call a “Combined
2D+3D AAM.” We also derive a real-time fitting algorithm
for a Combined 2D+3D AAM that explicitly recovers the
DI 3D pose and 3D shape of the face.
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Figure 1:A scene consisting of a static cube ahploints moving )
along fixed directions. (a) The base configuration. (b) The cube4.1 Computing 3D Shape from an AAM

viewed from a different direction with the 3 points moved. ]
If we have a 2D AAM, a sequence of imagEgu) for ¢t =

0,...,N, and have tracked the face through the sequence
not hold, the 2D model instance is not realizable with the with the AAM, then denote the AAM shape parameters at
3D model. An example of this is presented in Figure 1. timet by pt = (p!,...,p!,)T. Using Equation (2) we can

The scene in Figure 1 consists of a static cube (of which compute the 2D AAM shape vectst for each time:
7 vertices are visible) an8 moving points (marked with a

diamond, a triangle, and a square.) Thpoints can move ' uf wb o
along the three axes at the same, non-constant speed. The s = ( O S 112 )
3D shape of the scereis composed of a base shage
and a single 3D shape vect®r. The base sha® corre- A variety of non-rigid structure-from-motion algorithms
spond to the static cube and the initial locations of the threehave been proposed to convert the tracked feature points
moving points. The 3D shape vec®r corresponds to the in Equation (15) into 3D linear shape modes. Bregler et
motion of the three points (diamond, triangle, square.) al. [4] proposed a factorization method to simultaneously
We randomly generate@) sets of shape parametéis reconstruct the non-rigid shape and camera matrices. This
(see Equation (5)) and camera projection matriPetsee method was extended to a trilinear optimization approach
Equation (8)) and synthesized the 2D shapess®f3D in [11]. The optimization process involves three types of
model instances. We then computed the 2D shape modelinknowns, shape vectors, shape parameters, and projection
by performing PCA on thé0 2D shapes. The result con- matrices. At each step, two of the unknowns are fixed and
sists of12 shape vectors, confirming the result above that asthe third refined. Brandi3] proposed a similar non-linear
many ass x (m + 1) 2D shape vectors might be required. optimization method that used an extension of Bregler's
The resulting 2D shape model can generate a large numsmethod for initialization. All of these methods only use the
ber of shapes that are impossible to generate with the 3Dusual orthonormality constraints on the projection matrices
model. One concrete example is the base shape of the 20010]. In [12] we proved that only enforcing the orthonor-

(15)

modelsg. In our experiments, turns out to besy = mality constraints is ambiguous and demonstrate that it can
lead to an incorrect solution. We now outline how our algo-

( —0.194 -0.141 -0.093 -0.146 —0.119 rithm [12] can be used to compute 3D shape modes from an
0.280 0.139  0.036  0.177 —0.056 AAM. (Any of the other algorithms could be used instead,

—0.167 —0.172 —0.027 0.520 0.539 although with worse results.) We stack the 2D AAM shape
0.048  0.085 —1.013 0.795 —0.491 |- (13) vectors in allNV images into a measurement matrix:

We now need to show that is not a 3D model instance. ud  ud o ud
It is possible to show that, can beuniquelydecomposed of W 0
into: So = P0§O + P1§1 = W = : : : : ) (16)
0.053 0.026  0.048 Y\ _ ul wd o ulY
~0.141 0.091 —0.106 )™ oN N N
N ( g.gelgg 8?6122 g.igg )Sl_ (14)  If this data can be explained by a set of 3D linear shape
e ) e modes, thedV can be representetiy = M B =
It i§ easy to see th® is not. a constant multiple cIfl, and ' PO PO . 0 PO
neither ofPy, andP, are legitimate weak perspective matri- Pl plpl . ﬁPl 50

ces (i.e. composed of two equal length, orthogonal vectors).
Therefore, we have shown that the 2D model instasds : : : : _
not a valid 3D model instance. PN pNPN . pNPN Sm

(17)



whereM is a2(N +1) x 3(m + 1) scaled projection matrix
andB is a3(m + 1) x n shape matrix (setting the number
of 3D verticesn to equal the number of AAM vertices.)

N

_—— |

%}155'-5_7

Sincem is the number of 3D shape vectors, it is usually  T=REEES—
small and the rank dil” is at mosB(m + 1). ((/i‘k\\\‘
We perform a Singular Value Decomposition (SVD) on (a) AAM so

W and factorize it into the product of AN +1) x 3(m + 1)
matrix M and a3(7+ 1) x n matrix B. This decomposition

is not unique, and is only determined up to a linear transfor-
mation. Any non-singulas(m + 1) x 3(m + 1) matrix G

and its inverse could be inserted betwdérand 3 and their
product would still equal’’. The scaled projection matrix

M and the shape vector matrix are then given by:

M=M-G, B=G''B (18)

whereG is the corrective matrix. 1112] we proposed ad-
ditional basisconstraints to comput&'. See[12] for the
details. Oncé7 has been determined/ and B can be re-
covered. In summary, the 3D shape modes have been com-
puted from the 2D AAM shape modes and the 2D AAM Figure 2: An example of the computation of 3D shape modes

tracking results. Note that the tracking data is needed. from an AAM. The figure shows the AAM shape (a—c) and ap-
pearance (d—f) variation, and the first three 3D shape modes (g—i).

(g) 3D Shaps&y, (h) 3D Shaps&; (i) 3D Shapes:

4.1.1 Experimental Results whereP andp = (p,, . . ., Pm) vary over their allowed val-

We illustrate the computation of the 3D shape modes from ues. (Note thaP is a functionP = P (0, 0y, 1,j) and so it
an AAM in Figure 2. We first constructed an AAM for 5 is the parameters, , o, i, j that are actually varying.)
people using 20 training images of each person. In Fig- The constraints on the AAM shape parametetbat we
ures 2(a_c) we include the AAM mean shmeand the seek to impose are that there exist Iegitimate valuePR of
first 2 (of 17) AAM shape variation modes ands,. Fig- andp such that the 2D projected 3D shape equals the 2D
ures 2(d—f) illustrate the mean AAM appearangeand the ~ shape of the AAM. These constraints can be written:
first 2 (of 42) AAM appearance variation modesand\s.
The AAM is then fit to short videos (in total 900 frames) of i B oo
each of the 5 people and the results used to compute the 30p'%! N {'s0 + Zpi si;q | — P {80+ Zpi Si
1=1 1=1

where|| - |2 denotes the sum of the squares of the elements

of the matrix. The only quantities in Equation (21) that are

shape modes. The mean sh&pend first 2 (of 15) shape
modess; ands; are illustrated in Figures 2(g—i).

4.2 Constraining an AAM with 3D Shape not either known ., 7, s;, §;) or optimized P, p) arep,

. Equation (21) is therefore a set of constraint .

The 3D shape modes just computed are a 3D model of theOl q (21) on
same phenomenon that the AAM modeled. We now de- o ) )
rive constraints on the 2D AAM shape parametprs= 4.3  Fitting with 3D Shape Constraints
(p1,--.,pm) that force the AAM to only move in a way
that is consistent with the 3D shape modes. If we denote:

2
=0

We now briefly outline our algorithm to fit an AAM while
enforcing these constraints. In particular, we extend our
real-time AAM fitting algorithm[8]. The result is an algo-

Ty ... Tp T T ) .
Pl wyi ... yn =(P| v |...P[ un rithm that turns out to be even faster than the 2D algorithm.
2 e 2 2 7 The goal of AAM fitting[8] is to minimize:

2

then the 2D shape variation of the 3D shape modes over all !
> 1A + > Nidi(u) - IW(wpsq)) | (22)
=1

imaging conditions is:

u€Esg

P (s, + i@ 5 (20) simultaneouslyith r.esp_ect to the AAM Shapp., appear-
p ancel, and normalizationg parameters. We impose the



constraints in Equation (21) as soft constraints on Equa-but can easily be computed. Equation (28) means that to
tion (22) with a large weighis; i.e. we re-pose AAM fitting ~ optimize the expression in Equation (26) using the inverse

as simultaneously minimizing: compositional algorithm, we must iteratively minimize:
: ’ G(Ap,Aq) + F((p,q)+J(Ap, Aq); P+ AP; P+ Ap)

> [Ao(u) + > Nidi(u) - I(W(u;psq)) | + (29)
ueso i=1 simultaneously with respect tdp, Aq, AP, and Ap,

2 whereG(Ap, Aq) is the expression in Equation (27).

(23) The reason for using the inverse compositional algorithm
is that the Gauss-Newton Hessian of the expression in Equa-

with respect top, q, A, P, andp. In the limit K — oo tion (27) is a constant and so can be precomp(#gdit is

the constraints become hard constraints. In practice, a suit&2SY t0 show (seld] for the details) that the Gauss-Newton

ably large value fork results in the system being solved Hessian of the expression in Equation (29) is the sum of the

K ‘

N (So + Zpi Si§Q> -P (So + Zpisi>
i=1 i=1

approximately as though the constraints are hard. Hessian foiG aljd the Hessian far. (This r_eli_es on the two
The technique ifig] (proposed iri6]) to sequentiallyop- terms each being a sum of squares.) Similarly, the Gaus;-
timize for the AAM shapep, q, and appearanck parame- Nevvton.steepest-descent parameter updates for the entire
ters can also be used on the above equation. We optimize: €XPression are the sum of the updates for the two terms sep-
arately. An efficient optimization algorithm can therefore
|Ag(u) — I(W(u; p; q))||§pan(A1)L + be built based on the inverse compositional algorithm.
. _ 2 The Hessian fo(G is precomputed as if8]. The Hes-
. _ _ sian for F' is computed in the online phase and added to
K HN (SO + ;pi 56 q) -P (SO + ;pi Si) (% e Hessian fofy. Since nothing inf” depends on the im-
- = ages, the Hessian fdr can be computed very efficiently.
with respect tg, q, P, andp, where|| - ||§W(AI_)L denotes  The steepest-descent parameter updates fire also com-
the square of the L2 norm of the vector projected into or- puted exactly as i8] and added to the steepest-descent
thogonal complement of the linear subspace spanned by thgpgarameter updates fdf. The final Gauss-Newton parame-
vectorsAy, ..., A;. Afterwards, we solve for the appear- ter updates can then be computed by inverting the combined
ance parameters using the linear closed-form solution: Hessian and multiplying by the combined steepest-descent
parameter updates. The warp paramefgerg are then
A= Z Ai(u) - [I(W(u;p;q)) — Ao(u)] (25) updatedW (u; p;q) «— W(u;p;q) o W(u; Ap; Aq)~!
u€so and the other parameters additivdly — P + AP and
where the parametets, q are the result of the previous P — P + Ap. One minor detail is the fact tha¥ and
optimization. (Note that Equation (25) assumes that the ap-£ have different parameter sets to be optimiZesip, Aq)
pearance vectors,(u) are orthonormal.) The optimality ~and(Ap; Aq; AP; Ap). The easiest way to deal with this

criterion in Equation (24) is of the form: is to think of G as a function of Ap; Aq; AP; Ap). All
) terms in both the Hessian and the steepest-descent parame-
[Ao() = I(W (u; p; Q))l|span(a,) - + F(P;a; P D). ter updates that relate to eith&iP or Ap are set to zero.
(26)

In a recent journal pape{g] we showed hovy to minimize 434 Experimental Results
[[Ao(w) — I(W (u; p; Q))l|5pan(a,)- USiNg theinverse com- _ _ _ -
positionalalgorithm; i.e. by iteratively minimizing: In Figure 3 we include an example of our algorithm fitting
) to a single input image. Figure 3(a) displays the initial con-

[Ao(W (u; Ap; Aq)) — I(W(w; ;@) l5panca,)e (27)  figuration, Figure 3(b) the results after 30 iterations, and
Figure 3(c) the results after the algorithm has converged. In
each case, we display the input image with the current es-
timate of the 3D shape mesh overlayed in white. (The 3D
shape is projected onto the image with the current camera
matrix.) In the top right, we also include renderings of the
3D shape from two different viewpoints. In the top left we

with respect toAp, Aq and then updating the current es-
timate of the warp usingW(u;p;q) «— W(u;p;q) o

W (u; Ap; Aq)~!. When using the inverse compositional
algorithm we effectively chandd] the incremental updates
to the parameters frofAp, Aq) to J(Ap, Aq) where:

W(u; (p,q) + J(Ap,Aq)) =~ display estimates of the 3D pose extracted from the current
W (u; p;q) o W(u; Ap; Ap) (28) eetimate of the weak perspective camera maixVe al_so
display the current estimate of the 2D AAM shape projected
to a first order approximation, addis an(m+4) x (m+4) onto the input image as blue dots. Note that as the AAM is

matrix. In generall depends on the warp parametgssq) fit, we simultaneously estimate the 3D shape (white mesh),
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(a) Initialization (b) After 30 Iterations (c) Converged
Figure 3: An example of our algorithm fitting to a single image. We display the 3D shape estimate (white) projected onto the original

image and also from a couple of other viewpoints (top right). We also display the 2D AAM shape (blue dots.)

algorithm[8] operates at 4.9 frames per second in Matlab
and over 200 frames per second in C, both on a 3GHz Dual
Pentium 4. Currently we have only had time to implement
the 2D+3D AAM algorithm in Matlab. In Matlab the new
algorithm runs at 6.1 frames per second. Note however, that
the time per iteration for the 2D algorithm is approximately
20% less than for the 2D+3D algorithm but it requires more
iterations to reach the same level of convergence. Assum-
ing the improvement in fitting speed will be the same in C
(there is no reason to suspect otherwise, the new code is
very similar in style to the old), the C implementation of
the 2D+3D algorithm should run at well over 250 frames
per second (and faster than the 2D code.)
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(c) Frame 3 (d) Frame 4
Figure 4:The results of using our algorithm to track a faceina 5.1 Summary
180 frame video sequence by fitting the model to each frame.

5 Conclusion

In Section 3 we compared the shape representational power
the 2D shape (blue dots), and the camera matrix/3D poseof 2 of the most popular face models: Active Appearance
(top left). In the example in Figure 3, we start the AAM Models (AAMs)[5] and 3D Morphable Models (3DMMs)
relatively far from the correct solution and so a relatively [2]. Even though AAMs are 2D whereas 3DMMs are 3D,
large number of iterations are required. Averaged across allwe showed that AAMs can represent any phenomena that
frames in a typical sequence, only 6 iterations per image3DMMs can, albeit possibly at the expense of requiring
were required for convergence. In Figure 4 we include 4 up to 6 times as many shape parameters. Because they, in
frames of our algorithm being used to track a face in a 180 general, have more shape parameters, AAMs can generate
frame video by fitting the model successively to each frame. many model instances that are not possible with the corre-

A useful feature of the “2D+3D AAM” is the ability to  sponding 3DMMs. One interpretation of this fact is that the
render the 3D model from novel viewpoints. Figure 5 shows AAM has too much representational power and can gener-
an example image and the 2D+3D AAM fit result in the ate “impossible” instances that are not physically realizable.
top row. The bottom left shows the 3D shape and appear- In Section 4 we first showed how to compute the equiv-
ance reconstruction from the model parameters. The bot-alent 3D shape modes of a 2D AAM. We used a linear
tom right shows model reconstructions from two new view- non-rigid structure-from-motion algorithifil2] that does
points. Note the sides of the face appear flat. The currentnot suffer from the local minima that other non-linear algo-
mesh used to model the face does not include any points orrithms do. We then showed how the 3D shape modes can be
the cheeks (there are no reliable landmarks for hand placeused to impose constraints on the 2D AAM parameters that
ment) so there is no depth information there. force it to generate only model instances that can also be

Finally we compare the fitting speed of 2D+3D AAMs generated with the 3D shape modes. Finally, we extended
with that of 2D AAMs. See Table 1. Our 2D AAM fitting  our real-time AAM fitting algorithm[8] to impose these



Tracked Result

Table 1:Fitting speed on a 3GHz Dual Pentium 4 Xeon. These
results show number of frames per second (fps) or number of iter-
ations per second (ips) for an AAM with 17 2D shape parameters,
42 appearance parameters, and 30,000 color pixels. The 2D+3D
AAM has an extra 15 3D shape and 5 camera parameters.

2D AAM Fitting|2D+3D AAM Fitting
Matlah 87 ips 71ips
Matlab 4.9 fps 6.1 fps
C 230 fps ~286 fps (est.)

we plan to extend our real-time 2D+3D AAM fitting algo-
rithm to cope with both self and other forms of occlusion.

3D Model Reconstruction New View Reconstruction AC kn OWI e d g men tS
(©) (d)
Figure 5: 2D+3D AAM model reconstruction. (a) shows the The research described in this paper was conducted under
input image, (b) shows the tracked result, (c) the 2D+3D AAM U.S. Department of Defense contract N41756-03-C4024.
model reconstruction and (d) shows two new view reconstructions.
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5.2 Discussion and Future Work



