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As one of the most successful applications of image analysis and understanding, face
recognition has recently received significant attention, especially during the past
several years. At least two reasons account for this trend: the first is the wide range of
commercial and law enforcement applications, and the second is the availability of
feasible technologies after 30 years of research. Even though current machine
recognition systems have reached a certain level of maturity, their success is limited by
the conditions imposed by many real applications. For example, recognition of face
images acquired in an outdoor environment with changes in illumination and/or pose
remains a largely unsolved problem. In other words, current systems are still far away
from the capability of the human perception system.
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paper: the first is to provide an up-to-date review of the existing literature, and the
second is to offer some insights into the studies of machine recognition of faces. To
provide a comprehensive survey, we not only categorize existing recognition techniques
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In addition, relevant topics such as psychophysical studies, system evaluation, and
issues of illumination and pose variation are covered.
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1. INTRODUCTION

As one of the most successful applications
of image analysis and understanding, face
recognition has recently received signifi-
cant attention, especially during the past
few years. This is evidenced by the emer-
gence of face recognition conferences such
as the International Conference on Audio-
and Video-Based Authentication (AVBPA)
since 1997 and the International Con-
ference on Automatic Face and Gesture
Recognition (AFGR) since 1995, system-
atic empirical evaluations of face recog-
nition techniques (FRT), including the
FERET [Phillips et al. 1998b, 2000; Rizvi
et al. 1998], FRVT 2000 [Blackburn et al.
2001], FRVT 2002 [Phillips et al. 2003],
and XM2VTS [Messer et al. 1999] pro-
tocols, and many commercially available
systems (Table II). There are at least two
reasons for this trend; the first is the wide
range of commercial and law enforcement
applications and the second is the avail-
ability of feasible technologies after 30
years of research. In addition, the prob-
lem of machine recognition of human faces
continues to attract researchers from dis-
ciplines such as image processing, pattern
recognition, neural networks, computer
vision, computer graphics, and psychology.

The strong need for user-friendly sys-
tems that can secure our assets and pro-
tect our privacy without losing our iden-
tity in a sea of numbers is obvious. At
present, one needs a PIN to get cash from
an ATM, a password for a computer, a
dozen others to access the internet, and
so on. Although very reliable methods of
biometric personal identification exist, for

Table I. Typical Applications of Face Recognition
Areas Specific applications

Video game, virtual reality, training programs
Entertainment Human-robot-interaction, human-computer-interaction

Drivers’ licenses, entitlement programs
Smart cards Immigration, national ID, passports, voter registration

Welfare fraud
TV Parental control, personal device logon, desktop logon

Information security Application security, database security, file encryption
Intranet security, internet access, medical records
Secure trading terminals

Law enforcement Advanced video surveillance, CCTV control
and surveillance Portal control, postevent analysis

Shoplifting, suspect tracking and investigation

example, fingerprint analysis and retinal
or iris scans, these methods rely on the
cooperation of the participants, whereas
a personal identification system based on
analysis of frontal or profile images of the
face is often effective without the partici-
pant’s cooperation or knowledge. Some of
the advantages/disadvantages of different
biometrics are described in Phillips et al.
[1998]. Table I lists some of the applica-
tions of face recognition.

Commercial and law enforcement ap-
plications of FRT range from static,
controlled-format photographs to uncon-
trolled video images, posing a wide range
of technical challenges and requiring an
equally wide range of techniques from im-
age processing, analysis, understanding,
and pattern recognition. One can broadly
classify FRT systems into two groups de-
pending on whether they make use of
static images or of video. Within these
groups, significant differences exist, de-
pending on the specific application. The
differences are in terms of image qual-
ity, amount of background clutter (posing
challenges to segmentation algorithms),
variability of the images of a particular
individual that must be recognized, avail-
ability of a well-defined recognition or
matching criterion, and the nature, type,
and amount of input from a user. A list
of some commercial systems is given in
Table II.

A general statement of the problem of
machine recognition of faces can be for-
mulated as follows: given still or video
images of a scene, identify or verify
one or more persons in the scene us-
ing a stored database of faces. Available
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Table II. Available Commercial Face Recognition Systems (Some of these Web sites
may have changed or been removed.) [The identification of any company, commercial

product, or trade name does not imply endorsement or recommendation by the National
Institute of Standards and Technology or any of the authors or their institutions.]

Commercial products Websites
FaceIt from Visionics http://www.FaceIt.com
Viisage Technology http://www.viisage.com
FaceVACS from Plettac http://www.plettac-electronics.com
FaceKey Corp. http://www.facekey.com
Cognitec Systems http://www.cognitec-systems.de
Keyware Technologies http://www.keywareusa.com/
Passfaces from ID-arts http://www.id-arts.com/
ImageWare Sofware http://www.iwsinc.com/
Eyematic Interfaces Inc. http://www.eyematic.com/
BioID sensor fusion http://www.bioid.com
Visionsphere Technologies http://www.visionspheretech.com/menu.htm
Biometric Systems, Inc. http://www.biometrica.com/
FaceSnap Recoder http://www.facesnap.de/htdocs/english/index2.html
SpotIt for face composite http://spotit.itc.it/SpotIt.html

Fig. 1. Configuration of a generic face recognition
system.

collateral information such as race, age,
gender, facial expression, or speech may be
used in narrowing the search (enhancing
recognition). The solution to the problem
involves segmentation of faces (face de-
tection) from cluttered scenes, feature ex-
traction from the face regions, recognition,
or verification (Figure 1). In identification
problems, the input to the system is an un-
known face, and the system reports back
the determined identity from a database
of known individuals, whereas in verifica-
tion problems, the system needs to confirm
or reject the claimed identity of the input
face.

Face perception is an important part of
the capability of human perception sys-
tem and is a routine task for humans,
while building a similar computer sys-
tem is still an on-going research area. The
earliest work on face recognition can be
traced back at least to the 1950s in psy-
chology [Bruner and Tagiuri 1954] and to
the 1960s in the engineering literature
[Bledsoe 1964]. Some of the earliest stud-
ies include work on facial expression
of emotions by Darwin [1972] (see also
Ekman [1998]) and on facial profile-based
biometrics by Galton [1888]). But re-
search on automatic machine recogni-
tion of faces really started in the 1970s
[Kelly 1970] and after the seminal work
of Kanade [1973]. Over the past 30
years extensive research has been con-
ducted by psychophysicists, neuroscien-
tists, and engineers on various aspects
of face recognition by humans and ma-
chines. Psychophysicists and neuroscien-
tists have been concerned with issues
such as whether face perception is a
dedicated process (this issue is still be-
ing debated in the psychology community
[Biederman and Kalocsai 1998; Ellis 1986;
Gauthier et al. 1999; Gauthier and Logo-
thetis 2000]) and whether it is done holis-
tically or by local feature analysis.

Many of the hypotheses and theories
put forward by researchers in these dis-
ciplines have been based on rather small
sets of images. Nevertheless, many of the
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findings have important consequences for
engineers who design algorithms and sys-
tems for machine recognition of human
faces. Section 2 will present a concise re-
view of these findings.

Barring a few exceptions that use range
data [Gordon 1991], the face recognition
problem has been formulated as recogniz-
ing three-dimensional (3D) objects from
two-dimensional (2D) images.1 Earlier ap-
proaches treated it as a 2D pattern recog-
nition problem. As a result, during the
early and mid-1970s, typical pattern clas-
sification techniques, which use measured
attributes of features (e.g., the distances
between important points) in faces or face
profiles, were used [Bledsoe 1964; Kanade
1973; Kelly 1970]. During the 1980s, work
on face recognition remained largely dor-
mant. Since the early 1990s, research in-
terest in FRT has grown significantly. One
can attribute this to several reasons: an in-
crease in interest in commercial opportu-
nities; the availability of real-time hard-
ware; and the increasing importance of
surveillance-related applications.

Over the past 15 years, research has
focused on how to make face recognition
systems fully automatic by tackling prob-
lems such as localization of a face in a
given image or video clip and extraction
of features such as eyes, mouth, etc.
Meanwhile, significant advances have
been made in the design of classifiers
for successful face recognition. Among
appearance-based holistic approaches,
eigenfaces [Kirby and Sirovich 1990;
Turk and Pentland 1991] and Fisher-
faces [Belhumeur et al. 1997; Etemad
and Chellappa 1997; Zhao et al. 1998]
have proved to be effective in experiments
with large databases. Feature-based
graph matching approaches [Wiskott
et al. 1997] have also been quite suc-
cessful. Compared to holistic approaches,
feature-based methods are less sensi-
tive to variations in illumination and
viewpoint and to inaccuracy in face local-

1There have been recent advances on 3D face recogni-
tion in situations where range data acquired through
structured light can be matched reliably [Bronstein
et al. 2003].

ization. However, the feature extraction
techniques needed for this type of ap-
proach are still not reliable or accurate
enough [Cox et al. 1996]. For example,
most eye localization techniques assume
some geometric and textural models and
do not work if the eye is closed. Section 3
will present a review of still-image-based
face recognition.

During the past 5 to 8 years, much re-
search has been concentrated on video-
based face recognition. The still image
problem has several inherent advantages
and disadvantages. For applications such
as drivers’ licenses, due to the controlled
nature of the image acquisition process,
the segmentation problem is rather easy.
However, if only a static picture of an air-
port scene is available, automatic location
and segmentation of a face could pose se-
rious challenges to any segmentation al-
gorithm. On the other hand, if a video
sequence is available, segmentation of a
moving person can be more easily accom-
plished using motion as a cue. But the
small size and low image quality of faces
captured from video can significantly in-
crease the difficulty in recognition. Video-
based face recognition is reviewed in
Section 4.

As we propose new algorithms and build
more systems, measuring the performance
of new systems and of existing systems
becomes very important. Systematic data
collection and evaulation of face recogni-
tion systems is reviewed in Section 5.

Recognizing a 3D object from its 2D im-
ages poses many challenges. The illumina-
tion and pose problems are two prominent
issues for appearance- or image-based ap-
proaches. Many approaches have been
proposed to handle these issues, with the
majority of them exploring domain knowl-
edge. Details of these approaches are dis-
cussed in Section 6.

In 1995, a review paper [Chellappa et al.
1995] gave a thorough survey of FRT
at that time. (An earlier survey [Samal
and Iyengar 1992] appeared in 1992.) At
that time, video-based face recognition
was still in a nascent stage. During the
past 8 years, face recognition has received
increased attention and has advanced
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technically. Many commercial systems for
still face recognition are now available.
Recently, significant research efforts have
been focused on video-based face model-
ing/tracking, recognition, and system in-
tegration. New datasets have been created
and evaluations of recognition techniques
using these databases have been carried
out. It is not an overstatement to say that
face recognition has become one of the
most active applications of pattern recog-
nition, image analysis and understanding.

In this paper we provide a critical review
of current developments in face recogni-
tion. This paper is organized as follows: in
Section 2 we briefly review issues that are
relevant from a psychophysical point of
view. Section 3 provides a detailed review
of recent developments in face recognition
techniques using still images. In Section 4
face recognition techniques based on video
are reviewed. Data collection and perfor-
mance evaluation of face recognition algo-
rithms are addressed in Section 5 with de-
scriptions of representative protocols. In
Section 6 we discuss two important prob-
lems in face recognition that can be math-
ematically studied, lack of robustness to
illumination and pose variations, and we
review proposed methods of overcoming
these limitations. Finally, a summary and
conclusions are presented in Section 7.

2. PSYCHOPHYSICS/NEUROSCIENCE
ISSUES RELEVANT TO FACE
RECOGNITION

Human recognition processes utilize a
broad spectrum of stimuli, obtained from
many, if not all, of the senses (visual,
auditory, olfactory, tactile, etc.). In many
situations, contextual knowledge is also
applied, for example, surroundings play
an important role in recognizing faces in
relation to where they are supposed to
be located. It is futile to even attempt to
develop a system using existing technol-
ogy, which will mimic the remarkable face
recognition ability of humans. However,
the human brain has its limitations in the
total number of persons that it can accu-
rately “remember.” A key advantage of a
computer system is its capacity to handle

large numbers of face images. In most
applications the images are available only
in the form of single or multiple views of
2D intensity data, so that the inputs to
computer face recognition algorithms are
visual only. For this reason, the literature
reviewed in this section is restricted to
studies of human visual perception of
faces.

Many studies in psychology and neuro-
science have direct relevance to engineers
interested in designing algorithms or sys-
tems for machine recognition of faces. For
example, findings in psychology [Bruce
1988; Shepherd et al. 1981] about the rela-
tive importance of different facial features
have been noted in the engineering liter-
ature [Etemad and Chellappa 1997]. On
the other hand, machine systems provide
tools for conducting studies in psychology
and neuroscience [Hancock et al. 1998;
Kalocsai et al. 1998]. For example, a pos-
sible engineering explanation of the bot-
tom lighting effects studied in Johnston
et al. [1992] is as follows: when the actual
lighting direction is opposite to the usually
assumed direction, a shape-from-shading
algorithm recovers incorrect structural in-
formation and hence makes recognition of
faces harder.

A detailed review of relevant studies in
psychophysics and neuroscience is beyond
the scope of this paper. We only summa-
rize findings that are potentially relevant
to the design of face recognition systems.
For details the reader is referred to the
papers cited below. Issues that are of po-
tential interest to designers are2:

—Is face recognition a dedicated process?
[Biederman and Kalocsai 1998; Ellis
1986; Gauthier et al. 1999; Gauthier and
Logothetis 2000]: It is traditionally be-
lieved that face recognition is a dedi-
cated process different from other ob-
ject recognition tasks. Evidence for the
existence of a dedicated face process-
ing system comes from several sources
[Ellis 1986]. (a) Faces are more eas-
ily remembered by humans than other

2Readers should be aware of the existence of diverse
opinions on some of these issues. The opinions given
here do not necessarily represent our views.
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objects when presented in an upright
orientation. (b) Prosopagnosia patients
are unable to recognize previously fa-
miliar faces, but usually have no other
profound agnosia. They recognize peo-
ple by their voices, hair color, dress, etc.
It should be noted that prosopagnosia
patients recognize whether a given ob-
ject is a face or not, but then have dif-
ficulty in identifying the face. Seven
differences between face recognition
and object recognition can be summa-
rized [Biederman and Kalocsai 1998]
based on empirical evidence: (1) con-
figural effects (related to the choice of
different types of machine recognition
systems), (2) expertise, (3) differences
verbalizable, (4) sensitivity to contrast
polarity and illumination direction (re-
lated to the illumination problem in ma-
chine recognition systems), (5) metric
variation, (6) Rotation in depth (related
to the pose variation problem in ma-
chine recognition systems), and (7) ro-
tation in plane/inverted face. Contrary
to the traditionally held belief, some re-
cent findings in human neuropsychol-
ogy and neuroimaging suggest that face
recognition may not be unique. Accord-
ing to [Gauthier and Logothetis 2000],
recent neuroimaging studies in humans
indicate that level of categorization and
expertise interact to produce the speci-
fication for faces in the middle fusiform
gyrus.3 Hence it is possible that the en-
coding scheme used for faces may also
be employed for other classes with simi-
lar properties. (On recognition of famil-
iar vs. unfamiliar faces see Section 7.)

—Is face perception the result of holistic
or feature analysis? [Bruce 1988; Bruce
et al. 1998]: Both holistic and feature
information are crucial for the percep-
tion and recognition of faces. Studies
suggest the possibility of global descrip-
tions serving as a front end for finer,
feature-based perception. If dominant
features are present, holistic descrip-

3The fusiform gyrus or occipitotemporal gyrus, lo-
cated on the ventromedial surface of the temporal
and occipital lobes, is thought to be critical for face
recognition.

tions may not be used. For example, in
face recall studies, humans quickly fo-
cus on odd features such as big ears, a
crooked nose, a staring eye, etc. One of
the strongest pieces of evidence to sup-
port the view that face recognition in-
volves more configural/holistic process-
ing than other object recognition has
been the face inversion effect in which
an inverted face is much harder to rec-
ognize than a normal face (first demon-
strated in [Yin 1969]). An excellent ex-
ample is given in [Bartlett and Searcy
1993] using the “Thatcher illusion”
[Thompson 1980]. In this illusion, the
eyes and mouth of an expressing face
are excised and inverted, and the re-
sult looks grotesque in an upright face;
however, when shown inverted, the face
looks fairly normal in appearance, and
the inversion of the internal features is
not readily noticed.

—Ranking of significance of facial features
[Bruce 1988; Shepherd et al. 1981]: Hair,
face outline, eyes, and mouth (not nec-
essarily in this order) have been de-
termined to be important for perceiv-
ing and remembering faces [Shepherd
et al. 1981]. Several studies have shown
that the nose plays an insignificant role;
this may be due to the fact that al-
most all of these studies have been done
using frontal images. In face recogni-
tion using profiles (which may be im-
portant in mugshot matching applica-
tions, where profiles can be extracted
from side views), a distinctive nose
shape could be more important than the
eyes or mouth [Bruce 1988]. Another
outcome of some studies is that both
external and internal features are im-
portant in the recognition of previ-
ously presented but otherwise unfamil-
iar faces, but internal features are more
dominant in the recognition of familiar
faces. It has also been found that the
upper part of the face is more useful
for face recognition than the lower part
[Shepherd et al. 1981]. The role of aes-
thetic attributes such as beauty, attrac-
tiveness, and/or pleasantness has also
been studied, with the conclusion that
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the more attractive the faces are, the
better is their recognition rate; the least
attractive faces come next, followed by
the midrange faces, in terms of ease of
being recognized.

—Caricatures [Brennan 1985; Bruce 1988;
Perkins 1975]: A caricature can be for-
mally defined [Perkins 1975] as “a sym-
bol that exaggerates measurements rel-
ative to any measure which varies from
one person to another.” Thus the length
of a nose is a measure that varies from
person to person, and could be useful
as a symbol in caricaturing someone,
but not the number of ears. A stan-
dard caricature algorithm [Brennan
1985] can be applied to different qual-
ities of image data (line drawings and
photographs). Caricatures of line draw-
ings do not contain as much information
as photographs, but they manage to cap-
ture the important characteristics of a
face; experiments based on nonordinary
faces comparing the usefulness of line-
drawing caricatures and unexaggerated
line drawings decidedly favor the former
[Bruce 1988].

—Distinctiveness [Bruce et al. 1994]: Stud-
ies show that distinctive faces are bet-
ter retained in memory and are rec-
ognized better and faster than typical
faces. However, if a decision has to be
made as to whether an object is a face
or not, it takes longer to recognize an
atypical face than a typical face. This
may be explained by different mecha-
nisms being used for detection and for
identification.

—The role of spatial frequency analysis
[Ginsburg 1978; Harmon 1973; Sergent
1986]: Earlier studies [Ginsburg 1978;
Harmon 1973] concluded that informa-
tion in low spatial frequency bands
plays a dominant role in face recog-
nition. Recent studies [Sergent 1986]
have shown that, depending on the spe-
cific recognition task, the low, band-
pass and high-frequency components
may play different roles. For example
gender classification can be successfully
accomplished using low-frequency com-
ponents only, while identification re-

quires the use of high-frequency com-
ponents [Sergent 1986]. Low-frequency
components contribute to global de-
scription, while high-frequency compo-
nents contribute to the finer details
needed in identification.

—Viewpoint-invariant recognition? [Bie-
derman 1987; Hill et al. 1997; Tarr
and Bulthoff 1995]: Much work in vi-
sual object recognition (e.g. [Biederman
1987]) has been cast within a theo-
retical framework introduced in [Marr
1982] in which different views of ob-
jects are analyzed in a way which
allows access to (largely) viewpoint-
invariant descriptions. Recently, there
has been some debate about whether ob-
ject recognition is viewpoint-invariant
or not [Tarr and Bulthoff 1995]. Some
experiments suggest that memory for
faces is highly viewpoint-dependent.
Generalization even from one profile
viewpoint to another is poor, though
generalization from one three-quarter
view to the other is very good [Hill et al.
1997].

—Effect of lighting change [Bruce et al.
1998; Hill and Bruce 1996; Johnston
et al. 1992]: It has long been informally
observed that photographic negatives
of faces are difficult to recognize. How-
ever, relatively little work has explored
why it is so difficult to recognize nega-
tive images of faces. In [Johnston et al.
1992], experiments were conducted to
explore whether difficulties with nega-
tive images and inverted images of faces
arise because each of these manipula-
tions reverses the apparent direction of
lighting, rendering a top-lit image of a
face apparently lit from below. It was
demonstrated in [Johnston et al. 1992]
that bottom lighting does indeed make it
harder to identity familiar faces. In [Hill
and Bruce 1996], the importance of top
lighting for face recognition was demon-
strated using a different task: match-
ing surface images of faces to determine
whether they were identical.

—Movement and face recognition [O’Toole
et al. 2002; Bruce et al. 1998; Knight and
Johnston 1997]: A recent study [Knight
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and Johnston 1997] showed that fa-
mous faces are easier to recognize when
shown in moving sequences than in
still photographs. This observation has
been extended to show that movement
helps in the recognition of familiar faces
shown under a range of different types
of degradations—negated, inverted, or
thresholded [Bruce et al. 1998]. Even
more interesting is the observation
that there seems to be a benefit
due to movement even if the informa-
tion content is equated in the mov-
ing and static comparison conditions.
However, experiments with unfamiliar
faces suggest no additional benefit from
viewing animated rather than static
sequences.

—Facial expressions [Bruce 1988]: Based
on neurophysiological studies, it seems
that analysis of facial expressions is ac-
complished in parallel to face recogni-
tion. Some prosopagnosic patients, who
have difficulties in identifying famil-
iar faces, nevertheless seem to recog-
nize expressions due to emotions. Pa-
tients who suffer from “organic brain
syndrome” suffer from poor expression
analysis but perform face recognition
quite well.4 Similarly, separation of face
recognition and “focused visual process-
ing” tasks (e.g., looking for someone with
a thick mustache) have been claimed.

3. FACE RECOGNITION FROM
STILL IMAGES

As illustrated in Figure 1, the prob-
lem of automatic face recognition involves
three key steps/subtasks: (1) detection and
rough normalization of faces, (2) feature
extraction and accurate normalization of
faces, (3) identification and/or verification.
Sometimes, different subtasks are not to-
tally separated. For example, the facial
features (eyes, nose, mouth) used for face
recognition are often used in face detec-
tion. Face detection and feature extraction
can be achieved simultaneously, as indi-

4From a machine recognition point of view, dramatic
facial expressions may affect face recognition perfor-
mance if only one photograph is available.

cated in Figure 1. Depending on the nature
of the application, for example, the sizes of
the training and testing databases, clutter
and variability of the background, noise,
occlusion, and speed requirements, some
of the subtasks can be very challenging.

Though fully automatic face recognition
systems must perform all three subtasks,
research on each subtask is critical. This
is not only because the techniques used
for the individual subtasks need to be im-
proved, but also because they are critical
in many different applications (Figure 1).
For example, face detection is needed to
initialize face tracking, and extraction of
facial features is needed for recognizing
human emotion, which is in turn essential
in human-computer interaction (HCI) sys-
tems. Isolating the subtasks makes it eas-
ier to assess and advance the state of the
art of the component techniques. Earlier
face detection techniques could only han-
dle single or a few well-separated frontal
faces in images with simple backgrounds,
while state-of-the-art algorithms can de-
tect faces and their poses in cluttered
backgrounds [Gu et al. 2001; Heisele et al.
2001; Schneiderman and Kanade 2000; Vi-
ola and Jones 2001]. Extensive research on
the subtasks has been carried out and rel-
evant surveys have appeared on, for exam-
ple, the subtask of face detection [Hjelmas
and Low 2001; Yang et al. 2002].

In this section we survey the state of the
art of face recognition in the engineering
literature. For the sake of completeness,
in Section 3.1 we provide a highlighted
summary of research on face segmenta-
tion/detection and feature extraction. Sec-
tion 3.2 contains detailed reviews of recent
work on intensity image-based face recog-
nition and categorizes methods of recog-
nition from intensity images. Section 3.3
summarizes the status of face recognition
and discusses open research issues.

3.1. Key Steps Prior to Recognition: Face
Detection and Feature Extraction

The first step in any automatic face
recognition systems is the detection of
faces in images. Here we only provide a
summary on this topic and highlight a few
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very recent methods. After a face has been
detected, the task of feature extraction is
to obtain features that are fed into a face
classification system. Depending on the
type of classification system, features can
be local features such as lines or fiducial
points, or facial features such as eyes,
nose, and mouth. Face detection may also
employ features, in which case features
are extracted simultaneously with face
detection. Feature extraction is also a
key to animation and recognition of facial
expressions.

Without considering feature locations,
face detection is declared successful if the
presence and rough location of a face has
been correctly identified. However, with-
out accurate face and feature location, no-
ticeable degradation in recognition perfor-
mance is observed [Martinez 2002; Zhao
1999]. The close relationship between fea-
ture extraction and face recognition moti-
vates us to review a few feature extraction
methods that are used in the recognition
approaches to be reviewed in Section 3.2.
Hence, this section also serves as an intro-
duction to the next section.

3.1.1. Segmentation/Detection: Summary.
Up to the mid-1990s, most work on
segmentation was focused on single-face
segmentation from a simple or complex
background. These approaches included
using a whole-face template, a deformable
feature-based template, skin color, and a
neural network.

Significant advances have been made
in recent years in achieving automatic
face detection under various conditions.
Compared to feature-based methods and
template-matching methods, appearance-
or image-based methods [Rowley et al.
1998; Sung and Poggio 1997] that train
machine systems on large numbers of
samples have achieved the best results.
This may not be surprising since face
objects are complicated, very similar to
each other, and different from nonface ob-
jects. Through extensive training, comput-
ers can be quite good at detecting faces.

More recently, detection of faces under
rotation in depth has been studied. One

approach is based on training on multiple-
view samples [Gu et al. 2001; Schnei-
derman and Kanade 2000]. Compared to
invariant-feature-based methods [Wiskott
et al. 1997], multiview-based methods of
face detection and recognition seem to be
able to achieve better results when the an-
gle of out-of-plane rotation is large (35◦).
In the psychology community, a similar
debate exists on whether face recognition
is viewpoint-invariant or not. Studies in
both disciplines seem to support the idea
that for small angles, face perception is
view-independent, while for large angles,
it is view-dependent.

In a detection problem, two statistics
are important: true positives (also referred
to as detection rate) and false positives
(reported detections in nonface regions).
An ideal system would have very high
true positive and very low false positive
rates. In practice, these two requirements
are conflicting. Treating face detection as
a two-class classification problem helps
to reduce false positives dramatically
[Rowley et al. 1998; Sung and Poggio 1997]
while maintaining true positives. This is
achieved by retraining systems with false-
positive samples that are generated by
previously trained systems.

3.1.2. Feature Extraction: Summary and
Methods

3.1.2.1. Summary. The importance of fa-
cial features for face recognition cannot
be overstated. Many face recognition sys-
tems need facial features in addition to
the holistic face, as suggested by studies
in psychology. It is well known that even
holistic matching methods, for example,
eigenfaces [Turk and Pentland 1991] and
Fisherfaces [Belhumeur et al. 1997], need
accurate locations of key facial features
such as eyes, nose, and mouth to normal-
ize the detected face [Martinez 2002; Yang
et al. 2002].

Three types of feature extraction meth-
ods can be distinguished: (1) generic meth-
ods based on edges, lines, and curves;
(2) feature-template-based methods that
are used to detect facial features such
as eyes; (3) structural matching methods
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that take into consideration geometrical
constraints on the features. Early ap-
proaches focused on individual features;
for example, a template-based approach
was described in [Hallinan 1991] to de-
tect and recognize the human eye in a
frontal face. These methods have difficulty
when the appearances of the features
change significantly, for example, closed
eyes, eyes with glasses, open mouth. To de-
tect the features more reliably, recent ap-
proaches have used structural matching
methods, for example, the Active Shape
Model [Cootes et al. 1995]. Compared to
earlier methods, these recent statistical
methods are much more robust in terms
of handling variations in image intensity
and feature shape.

An even more challenging situation for
feature extraction is feature “restoration,”
which tries to recover features that are
invisible due to large variations in head
pose. The best solution here might be to
hallucinate the missing features either by
using the bilateral symmetry of the face or
using learned information. For example, a
view-based statistical method claims to be
able to handle even profile views in which
many local features are invisible [Cootes
et al. 2000].

3.1.2.2. Methods. A template-based ap-
proach to detecting the eyes and mouth in
real images was presented in [Yuille et al.
1992]. This method is based on match-
ing a predefined parameterized template
to an image that contains a face region.
Two templates are used for matching the
eyes and mouth respectively. An energy
function is defined that links edges, peaks
and valleys in the image intensity to
the corresponding properties in the tem-
plate, and this energy function is min-
imized by iteratively changing the pa-
rameters of the template to fit the im-
age. Compared to this model, which is
manually designed, the statistical shape
model (Active Shape Model, ASM) pro-
posed in [Cootes et al. 1995] offers more
flexibility and robustness. The advantages
of using the so-called analysis through
synthesis approach come from the fact
that the solution is constrained by a flex-

ible statistical model. To account for tex-
ture variation, the ASM model has been
expanded to statistical appearance mod-
els including a Flexible Appearance Model
(FAM) [Lanitis et al. 1995] and an Active
Appearance Model (AAM) [Cootes et al.
2001]. In [Cootes et al. 2001], the pro-
posed AAM combined a model of shape
variation (i.e., ASM) with a model of the
appearance variation of shape-normalized
(shape-free) textures. A training set of 400
images of faces, each manually labeled
with 68 landmark points, and approxi-
mately 10,000 intensity values sampled
from facial regions were used. The shape
model (mean shape, orthogonal mapping
matrix Ps and projection vector bs) is gen-
erated by representing each set of land-
marks as a vector and applying principal-
component analysis (PCA) to the data.
Then, after each sample image is warped
so that its landmarks match the mean
shape, texture information can be sam-
pled from this shape-free face patch. Ap-
plying PCA to this data leads to a shape-
free texture model (mean texture, Pg
and bg ). To explore the correlation be-
tween the shape and texture variations,
a third PCA is applied to the concate-
nated vectors (bs and bg ) to obtain the
combined model in which one vector c
of appearance parameters controls both
the shape and texture of the model. To
match a given image and the model, an
optimal vector of parameters (displace-
ment parameters between the face region
and the model, parameters for linear in-
tensity adjustment, and the appearance
parameters c) are searched by minimiz-
ing the difference between the synthetic
image and the given one. After match-
ing, a best-fitting model is constructed
that gives the locations of all the facial
features and can be used to reconstruct
the original images. Figure 2 illustrates
the optimization/search procedure for
fitting the model to the image. To speed up
the search procedure, an efficient method
is proposed that exploits the similarities
among optimizations. This allows the di-
rect method to find and apply directions
of rapid convergence which are learned
off-line.
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Fig. 2. Multiresolution search from a displaced position using a face model. (Courtesy of T. Cootes,
K. Walker, and C. Taylor.)

3.2. Recognition from Intensity Images

Many methods of face recognition have
been proposed during the past 30 years.
Face recognition is such a challenging
yet interesting problem that it has at-
tracted researchers who have different
backgrounds: psychology, pattern recogni-
tion, neural networks, computer vision,
and computer graphics. It is due to this
fact that the literature on face recognition
is vast and diverse. Often, a single sys-
tem involves techniques motivated by dif-
ferent principles. The usage of a mixture
of techniques makes it difficult to classify
these systems based purely on what types
of techniques they use for feature repre-
sentation or classification. To have a clear
and high-level categorization, we instead
follow a guideline suggested by the psy-
chological study of how humans use holis-
tic and local features. Specifically, we have
the following categorization:

(1) Holistic matching methods. These
methods use the whole face region as
the raw input to a recognition system.
One of the most widely used repre-
sentations of the face region is eigen-
pictures [Kirby and Sirovich 1990;
Sirovich and Kirby 1987], which are
based on principal component analy-
sis.

(2) Feature-based (structural) matching
methods. Typically, in these methods,

local features such as the eyes, nose,
and mouth are first extracted and their
locations and local statistics (geomet-
ric and/or appearance) are fed into a
structural classifier.

(3) Hybrid methods. Just as the human
perception system uses both local fea-
tures and the whole face region to rec-
ognize a face, a machine recognition
system should use both. One can ar-
gue that these methods could poten-
tially offer the best of the two types of
methods.

Within each of these categories, further
classification is possible (Table III). Using
principal-component analysis (PCA),
many face recognition techniques have
been developed: eigenfaces [Turk and
Pentland 1991], which use a nearest-
neighbor classifier; feature-line-based
methods, which replace the point-to-point
distance with the distance between a point
and the feature line linking two stored
sample points [Li and Lu 1999]; Fisher-
faces [Belhumeur et al. 1997; Liu and
Wechsler 2001; Swets and Weng 1996b;
Zhao et al. 1998] which use linear/Fisher
discriminant analysis (FLD/LDA) [Fisher
1938]; Bayesian methods, which use a
probabilistic distance metric [Moghaddam
and Pentland 1997]; and SVM methods,
which use a support vector machine as the
classifier [Phillips 1998]. Utilizing higher-
order statistics, independent-component
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Table III. Categorization of Still Face Recognition Techniques
Approach Representative work
Holistic methods

Principal-component analysis (PCA)
Eigenfaces Direct application of PCA [Craw and Cameron 1996; Kirby

and Sirovich 1990; Turk and Pentland 1991]
Probabilistic eigenfaces Two-class problem with prob. measure [Moghaddam and

Pentland 1997]
Fisherfaces/subspace LDA FLD on eigenspace [Belhumeur et al. 1997; Swets and Weng

1996b; Zhao et al. 1998]
SVM Two-class problem based on SVM [Phillips 1998]
Evolution pursuit Enhanced GA learning [Liu and Wechsler 2000a]
Feature lines Point-to-line distance based [Li and Lu 1999]
ICA ICA-based feature analysis [Bartlett et al. 1998]

Other representations
LDA/FLD LDA/FLD on raw image [Etemad and Chellappa 1997]
PDBNN Probabilistic decision based NN [Lin et al. 1997]

Feature-based methods
Pure geometry methods Earlier methods [Kanade 1973; Kelly 1970]; recent

methods [Cox et al. 1996; Manjunath et al. 1992]
Dynamic link architecture Graph matching methods [Okada et al. 1998; Wiskott et al.

1997]
Hidden Markov model HMM methods [Nefian and Hayes 1998; Samaria 1994;

Samaria and Young 1994]
Convolution Neural Network SOM learning based CNN methods [Lawrence et al. 1997]

Hybrid methods
Modular eigenfaces Eigenfaces and eigenmodules [Pentland et al. 1994]
Hybrid LFA Local feature method [Penev and Atick 1996]
Shape-normalized Flexible appearance models [Lanitis et al. 1995]
Component-based Face region and components [Huang et al. 2003]

analysis (ICA) is argued to have more
representative power than PCA, and
hence may provide better recognition per-
formance than PCA [Bartlett et al. 1998].
Being able to offer potentially greater
generalization through learning, neural
networks/learning methods have also
been applied to face recognition. One ex-
ample is the Probabilistic Decision-Based
Neural Network (PDBNN) method [Lin
et al. 1997] and the other is the evolution
pursuit (EP) method [Liu and Wechsler
2000a].

Most earlier methods belong to the cat-
egory of structural matching methods, us-
ing the width of the head, the distances
between the eyes and from the eyes to the
mouth, etc. [Kelly 1970], or the distances
and angles between eye corners, mouth
extrema, nostrils, and chin top [Kanade
1973]. More recently, a mixture-distance
based approach using manually extracted
distances was reported [Cox et al. 1996].
Without finding the exact locations of
facial features, Hidden Markov Model-
(HMM-) based methods use strips of pix-

els that cover the forehead, eye, nose,
mouth, and chin [Nefian and Hayes 1998;
Samaria 1994; Samaria and Young 1994].
[Nefian and Hayes 1998] reported bet-
ter performance than Samaria [1994] by
using the KL projection coefficients in-
stead of the strips of raw pixels. One of
the most successful systems in this cate-
gory is the graph matching system [Okada
et al. 1998; Wiskott et al. 1997], which
is based on the Dynamic Link Architec-
ture (DLA) [Buhmann et al. 1990; Lades
et al. 1993]. Using an unsupervised learn-
ing method based on a self-organizing map
(SOM), a system based on a convolutional
neural network (CNN) has been developed
[Lawrence et al. 1997].

In the hybrid method category, we
will briefly review the modular eigenface
method [Pentland et al. 1994], a hybrid
representation based on PCA and local
feature analysis (LFA) [Penev and Atick
1996], a flexible appearance model-based
method [Lanitis et al. 1995], and a recent
development [Huang et al. 2003] along
this direction. In [Pentland et al. 1994],
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Fig. 3. Electronically modified images which were correctly identified.

the use of hybrid features by combining
eigenfaces and other eigenmodules is ex-
plored: eigeneyes, eigenmouth, and eigen-
nose. Though experiments show slight
improvements over holistic eigenfaces or
eigenmodules based on structural match-
ing, we believe that these types of methods
are important and deserve further inves-
tigation. Perhaps many relevant problems
need to be solved before fruitful results
can be expected, for example, how to opti-
mally arbitrate the use of holistic and local
features.

Many types of systems have been suc-
cessfully applied to the task of face recog-
nition, but they all have some advantages
and disadvantages. Appropriate schemes
should be chosen based on the specific re-
quirements of a given task. Most of the
systems reviewed here focus on the sub-
task of recognition, but others also in-
clude automatic face detection and feature
extraction, making them fully automatic
systems [Lin et al. 1997; Moghaddam and
Pentland 1997; Wiskott et al. 1997].

3.2.1. Holistic Approaches

3.2.1.1. Principal-Component Analysis.
Starting from the successful low-
dimensional reconstruction of faces
using KL or PCA projections [Kirby and
Sirovich 1990; Sirovich and Kirby 1987],
eigenpictures have been one of the major
driving forces behind face representa-
tion, detection, and recognition. It is
well known that there exist significant
statistical redundancies in natural im-
ages [Ruderman 1994]. For a limited class

of objects such as face images that are
normalized with respect to scale, trans-
lation, and rotation, the redundancy is
even greater [Penev and Atick 1996; Zhao
1999]. One of the best global compact
representations is KL/PCA, which decor-
relates the outputs. More specifically,
sample vectors x can be expressed as lin-
ear combinations of the orthogonal basis
�i: x = ∑n

i=1 ai�i ≈ ∑m
i=1 ai�i (typically

m � n) by solving the eigenproblem

C� = ��, (1)

where C is the covariance matrix for input
x.

An advantage of using such representa-
tions is their reduced sensitivity to noise.
Some of this noise may be due to small oc-
clusions, as long as the topological struc-
ture does not change. For example, good
performance under blurring, partial oc-
clusion and changes in background has
been demonstrated in many eigenpicture-
based systems, as illustrated in Figure 3.
This should not come as a surprise, since
the PCA reconstructed images are much
better than the original distorted im-
ages in terms of their global appearance
(Figure 4).

For better approximation of face images
outside the training set, using an extended
training set that adds mirror-imaged faces
was shown to achieve lower approxima-
tion error [Kirby and Sirovich 1990]. Us-
ing such an extended training set, the
eigenpictures are either symmetric or an-
tisymmetric, with the most leading eigen-
pictures typically being symmetric.
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Fig. 4. Reconstructed images using 300 PCA projection coefficients for electronically modi-
fied images (Figure 3). (From Zhao [1999].)

The first really successful demonstra-
tion of machine recognition of faces was
made in [Turk and Pentland 1991] using
eigenpictures (also known as eigenfaces)
for face detection and identification. Given
the eigenfaces, every face in the database
can be represented as a vector of weights;
the weights are obtained by projecting the
image into eigenface components by a sim-
ple inner product operation. When a new
test image whose identification is required
is given, the new image is also represented
by its vector of weights. The identification
of the test image is done by locating the
image in the database whose weights are
the closest to the weights of the test image.
By using the observation that the projec-
tion of a face image and a nonface image
are usually different, a method of detect-
ing the presence of a face in a given image
is obtained. The method was demon-
strated using a database of 2500 face im-
ages of 16 subjects, in all combinations of
three head orientations, three head sizes,
and three lighting conditions.

Using a probabilistic measure of sim-
ilarity, instead of the simple Euclidean
distance used with eigenfaces [Turk and
Pentland 1991], the standard eigenface
approach was extended [Moghaddam and
Pentland 1997] to a Bayesian approach.
Practically, the major drawback of a
Bayesian method is the need to esti-
mate probability distributions in a high-
dimensional space from very limited num-
bers of training samples per class. To avoid
this problem, a much simpler two-class
problem was created from the multiclass
problem by using a similarity measure

based on a Bayesian analysis of image dif-
ferences. Two mutually exclusive classes
were defined: �I , representing intraper-
sonal variations between multiple images
of the same individual, and �E , represent-
ing extrapersonal variations due to dif-
ferences in identity. Assuming that both
classes are Gaussian-distributed, likeli-
hood functions P (�|�I ) and P (�|�E ) were
estimated for a given intensity difference
� = I1 − I2. Given these likelihood func-
tions and using the MAP rule, two face im-
ages are determined to belong to the same
individual if P (�|�I ) > P (�|�E ). A large
performance improvement of this prob-
abilistic matching technique over stan-
dard nearest-neighbor eigenspace match-
ing was reported using large face datasets
including the FERET database [Phillips
et al. 2000]. In Moghaddam and Pentland
[1997], an efficient technique of probabil-
ity density estimation was proposed by de-
composing the input space into two mu-
tually exclusive subspaces: the principal
subspace F and its orthogonal subspace F̂
(a similar idea was explored in Sung and
Poggio [1997]). Covariances only in the
principal subspace are estimated for use
in the Mahalanobis distance [Fukunaga
1989]. Experimental results have been re-
ported using different subspace dimen-
sionalities MI and ME for �I and �E .
For example, MI = 10 and ME = 30
were used for internal tests, while MI =
ME = 125 were used for the FERET test.
In Figure 5, the so-called dual eigenfaces
separately trained on samples from �I
and �E are plotted along with the stan-
dard eigenfaces. While the extrapersonal
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Fig. 5. Comparison of “dual” eigenfaces and stan-
dard eigenfaces: (a) intrapersonal, (b) extraper-
sonal, (c) standard [Moghaddam and Pentland 1997].
(Courtesy of B. Moghaddam and A. Pentland.)

eigenfaces appear more similar to the
standard eigenfaces than the intraper-
sonal ones, the intrapersonal eigenfaces
represent subtle variations due mostly
to expression and lighting, suggesting
that they are more critical for identifica-
tion [Moghaddam and Pentland 1997].

Face recognition systems using
LDA/FLD have also been very suc-
cessful [Belhumeur et al. 1997; Etemad
and Chellappa 1997; Swets and Weng
1996b; Zhao et al. 1998; Zhao et al. 1999].
LDA training is carried out via scatter
matrix analysis [Fukunaga 1989]. For
an M -class problem, the within- and
between-class scatter matrices Sw, Sb are
computed as follows:

Sw =
M∑

i=1

Pr(ωi)Ci,

(2)

Sb =
M∑

i=1

Pr(ωi)(mi − m0)(mi − m0)T ,

where Pr(ωi) is the prior class probability,
and is usually replaced by 1/M in practice
with the assumption of equal priors. Here
Sw is the within-class satter matrix, show-
ing the average scatter5 Ci of the sam-
ple vectors x of different classes ωi around

5These are also conditional covariance matrices; the

Fig. 6. Different projection bases constructed from
a set of 444 individuals, where the set is augumented
via adding noise and mirroring. The first row shows
the first five pure LDA basis images W ; the second
row shows the first five subspace LDA basis images
W�; the average face and first four eigenfaces � are
shown on the third row [Zhao et al. 1998].

their respective means mi: Ci = E[(x(ω)−
mi)(x(ω) − mi)T |ω = ωi]. Similarly, Sb is
the Between-class Scatter Matrix, repre-
senting the scatter of the conditional mean
vectors mi around the overall mean vector
m0. A commonly used measure for quan-
tifying discriminatory power is the ratio
of the determinant of the between-class
scatter matrix of the projected samples to
the determinant of the within-class scat-
ter matrix: J (T ) = |T T SbT |/|T T SwT |.
The optimal projection matrix W which
maximizes J (T ) can be obtained by solv-
ing a generalized eigenvalue problem:

SbW = SwW�W . (3)

It is helpful to make comparisons
among the so-called (linear) projection al-
gorithms. Here we illustrate the com-
parison between eigenfaces and Fisher-
faces. Similar comparisons can be made
for other methods, for example, ICA pro-
jection methods. In all these projection al-
gorithms, classification is performed by (1)
projecting the input x into a subspace via
a projection/basis matrix Proj

6:

total covariance C used to compute the PCA projec-
tion is C = ∑M

i=1 Pr(ωi)Ci .
6Proj is � for eigenfaces, W for Fisherfaces with
pure LDA projection, and W� for Fisherfaces with
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z = Proj x; (4)

(2) comparing the projection coefficient
vector z of the input to all the prestored
projection vectors of labeled classes to
determine the input class label. The
vector comparison varies in different
implementations and can influence the
system’s performance dramatically [Moon
and Phillips 2001]. For example, PCA
algorithms can use either the angle or
the Euclidean distance (weighted or un-
weighted) between two projection vectors.
For LDA algorithms, the distance can be
unweighted or weighted.

In Swets and Weng [1996b], discrimi-
nant analysis of eigenfeatures is applied
in an image retrieval system to determine
not only class (human face vs. nonface
objects) but also individuals within the
face class. Using tree-structure learning,
the eigenspace and LDA projections
are recursively applied to smaller and
smaller sets of samples. Such recursive
partitioning is carried out for every node
until the samples assigned to the node
belong to a single class. Experiments on
this approach were reported in Swets and
Weng [1996]. A set of 800 images was
used for training; the training set came
from 42 classes, of which human faces
belong to a single class. Within the single
face class, 356 individuals were included
and distinguished. Testing results on
images not in the training set were 91%
for 78 face images and 87% for 38 nonface
images based on the top choice.

A comparative performance analysis
was carried out in Belhumeur et al. [1997].
Four methods were compared in this pa-
per: (1) a correlation-based method, (2) a
variant of the linear subspace method sug-
gested in Shashua [1994], (3) an eigenface
method Turk and Pentland [1991], and (4)
a Fisherface method which uses subspace
projection prior to LDA projection to
avoid the possible singularity in Sw as
in Swets and Weng [1996b]. Experiments
were performed on a database of 500
images created by Hallinan [1994] and a

sequential PCA and LDA projections; these three
bases are shown for visual comparison in Figure 6.

database of 176 images created at Yale.
The results of the experiments showed
that the Fisherface method performed
significantly better than the other three
methods. However, no claim was made
about the relative performance of these
algorithms on larger databases.

To improve the performance of LDA-
based systems, a regularized subspace
LDA system that unifies PCA and LDA
was proposed in Zhao [1999] and Zhao
et al. [1998]. Good generalization ability
of this system was demonstrated by ex-
periments that carried out testing on new
classes/individuals without retraining the
PCA bases �, and sometimes the LDA
bases W . While the reason for not re-
training PCA is obvious, it is interesting
to test the adaptive capability of the sys-
tem by fixing the LDA bases when im-
ages from new classes are added.7 The
fixed PCA subspace of dimensionality 300
was trained from a large number of sam-
ples. An augmented set of 4056 mostly
frontal-view images constructed from the
original 1078 FERET images of 444 in-
dividuals by adding noise and mirroring
was used in Zhao et al. [1998]. At least
one of the following three characteristics
separates this system from other LDA-
based systems: (1) the unique selection
of the universal face subspace dimension,
(2) the use of a weighted distance mea-
sure, and (3) a regularized procedure that
modifies the within-class scatter matrix
Sw. The authors selected the dimension-
ality of the universal face subspace based
on the characteristics of the eigenvectors
(face-like or not) instead of the eigenval-
ues [Zhao et al. 1998], as is commonly
done. Later it was concluded in Penev and
Sirovich [2000] that the global face sub-
space dimensionality is on the order of
400 for large databases of 5,000 images.
A weighted distance metric in the pro-
jection space z was used to improve per-
formance [Zhao 1999].8 Finally, the LDA

7This makes sense because the final classification is
carried out in the projection space z by comparison
with prestored projection vectors.
8Weighted metrics have also been used in the pure
LDA approach [Etemad and Chellappa 1997] and the
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Fig. 7. Two architectures for performing ICA on images. Left: architecture for
finding statistically independent basis images. Performing source separation on
the face images produces independent images in the rows of U . Right: architecture
for finding a factorial code. Performing source separation on the pixels produces a
factorial code in the columns of the output matrix U [Bartlett et al. 1998]. (Courtesy
of M. Bartlett, H. Lades, and T. Sejnowski.)

training was regularized by modifying the
Sw matrix to Sw+δI , where δ is a relatively
small positive number. Doing this solves
a numerical problem when Sw is close to
being singular. In the extreme case where
only one sample per class is available, this
regularization transforms the LDA prob-
lem into a standard PCA problem with Sb
being the covariance matrix C. Applying
this approach, without retraining the LDA
basis, to a testing/probe set of 46 individ-
uals of which 24 were trained and 22 were
not trained (a total of 115 images including
19 untrained images of nonfrontal views),
the authors reported the following perfor-
mance based on a front-view-only gallery
database of 738 images: 85.2% for all im-
ages and 95.1% for frontal views.

An evolution pursuit- (EP-) based adap-
tive representation and its application to
face recognition were presented in Liu and
Wechsler [2000a]. In analogy to projection
pursuit methods, EP seeks to learn an op-
timal basis for the dual purpose of data
compression and pattern classification. In
order to increase the generalization ability
of EP, a balance is sought between min-
imizing the empirical risk encountered
during training and narrowing the con-
fidence interval for reducing the guaran-
teed risk during future testing on unseen
data [Vapnik 1995]. Toward that end, EP
implements strategies characteristic of ge-
netic algorithms (GAs) for searching the

so-called enhanced FLD (EFM) approach [Liu and
Wechsler 2000b].

space of possible solutions to determine
the optimal basis. EP starts by projecting
the original data into a lower-dimensional
whitened PCA space. Directed random ro-
tations of the basis vectors in this space
are then searched by GAs where evolution
is driven by a fitness function defined in
terms of performance accuracy (empirical
risk) and class separation (confidence in-
terval). The feasibility of this method has
been demonstrated for face recognition,
where the large number of possible bases
requires a greedy search algorithm. The
particular face recognition task involves
1107 FERET frontal face images of 369
subjects; there were three frontal images
for each subject, two for training and the
remaining one for testing. The authors re-
ported improved face recognition perfor-
mance as compared to eigenfaces [Turk
and Pentland 1991], and better gen-
eralization capability than Fisherfaces
[Belhumeur et al. 1997].

Based on the argument that for tasks
such as face recognition much of the
important information is contained in
high-order statistics, it has been pro-
posed [Bartlett et al. 1998] to use ICA
to extract features for face recognition.
Independent-component analysis is a gen-
eralization of principal-component anal-
ysis, which decorrelates the high-order
moments of the input in addition to the
second-order moments. Two architectures
have been proposed for face recognition
(Figure 7): the first is used to find a set
of statistically independent source images
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Fig. 8. Comparison of basis images using two architectures for performing ICA: (a) 25 indepen-
dent components of Architecture I, (b) 25 independent components of Architecture II [Bartlett
et al. 1998]. (Courtesy of M. Bartlett, H. Lades, and T. Sejnowski.)

that can be viewed as independent image
features for a given set of training im-
ages [Bell and Sejnowski 1995], and the
second is used to find image filters that
produce statistically independent out-
puts (a factorial code method) [Bell and Se-
jnowski 1997]. In both architectures, PCA
is used first to reduce the dimensional-
ity of the original image size (60 × 50).
ICA is performed on the first 200 eigenvec-
tors in the first architecture, and is carried
out on the first 200 PCA projection coeffi-
cients in the second architecture. The au-
thors reported performance improvement
of both architectures over eigenfaces in
the following scenario: a FERET subset
consisting of 425 individuals was used;
all the frontal views (one per class) were
used for training and the remaining (up
to three) frontal views for testing. Basis
images of the two architectures are shown
in Figure 8 along with the corresponding
eigenfaces.

3.2.1.2. Other Representations. In addition
to the popular PCA representation and its
derivatives such as ICA and EP, other fea-
tures have also been used, such as raw in-
tensities and edges.

A fully automatic face detec-
tion/recognition system based on a
neural network is reported in Lin et al.
[1997]. The proposed system is based
on a probabilistic decision-based neu-
ral network (PDBNN, an extended
(DBNN) [Kung and Taur 1995]) which
consists of three modules: a face detector,
an eye localizer, and a face recognizer.
Unlike most methods, the facial regions
contain the eyebrows, eyes, and nose,
but not the mouth.9 The rationale of
using only the upper face is to build a
robust system that excludes the influence
of facial variations due to expressions
that cause motion around the mouth.
To improve robustness, the segmented
facial region images are first processed
to produce two features at a reduced
resolution of 14×10: normalized intensity
features and edge features, both in the
range [0, 1]. These features are fed into
two PDBNNs and the final recognition
result is the fusion of the outputs of these
two PDBNNs. A unique characteristic of
PDBNNs and DBNNs is their modular
structure. That is, for each class/person

9Such a representation was also used in Kirby and
Sirovich [1990]
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Fig. 9. Structure of the PDBNN face recognizer. Each class subnet is
designed to recognize one person. All the network weightings are in prob-
abilistic format [Lin et al. 1997]. (Courtesy of S. Lin, S. Kung, and L. Lin.)

to be recognized, PDBNN/DBNN devotes
one of its subnets to the representation of
that particular person, as illustrated in
Figure 9. Such a one-class-in-one-network
(OCON) structure has certain advan-
tages over the all-classes-in-one-network
(ACON) structure that is adopted by
the conventional multilayer perceptron
(MLP). In the ACON structure, all classes
are lumped into one supernetwork,
so large numbers of hidden units are
needed and convergence is slow. On
the other hand, the OCON structure
consists of subnets that consist of small
numbers of hidden units; hence it not
only converges faster but also has better
generalization capability. Compared to
most multiclass recognition systems that
use a discrimination function between

any two classes, PDBNN has a lower
false acceptance/rejection rate because it
uses the full density description for each
class. In addition, this architecture is
beneficial for hardware implementation
such as distributed computing. However,
it is not clear how to accurately estimate
the full density functions for the classes
when there are only limited numbers of
samples. Further, the system could have
problems when the number of classes
grows exponentially.

3.2.2. Feature-Based Structural Matching Ap-
proaches. Many methods in the structural
matching category have been proposed,
including many early methods based on
geometry of local features [Kanade 1973;
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Fig. 10. The bunch graph representation of faces used in elastic graph matching [Wiskott et al.
1997]. (Courtesy of L. Wiskott, J.-M. Fellous, and C. von der Malsburg.)

Kelly 1970] as well as 1D [Samaria and
Young 1994] and pseudo-2D [Samaria
1994] HMM methods. One of the most
successful of these systems is the Elas-
tic Bunch Graph Matching (EBGM) sys-
tem [Okada et al. 1998; Wiskott et al.
1997], which is based on DLA [Buhmann
et al. 1990; Lades et al. 1993]. Wavelets,
especially Gabor wavelets, play a building
block role for facial representation in these
graph matching methods. A typical local
feature representation consists of wavelet
coefficients for different scales and rota-
tions based on fixed wavelet bases (called
jets in Okada et al. [1998]). These locally
estimated wavelet coefficients are robust
to illumination change, translation, dis-
tortion, rotation, and scaling.

The basic 2D Gabor function and its
Fourier transform are

g (x, y : u0, v0) = exp
(−[

x2/2σ 2
x + y2/2σ 2

y

]
+ 2πi[u0x + vo y]),

G(u, v) = exp
( − 2π2(σ 2

x (u − u0)2

+ σ 2
y (v − v0)2)), (5)

where σx and σ y represent the spatial
widths of the Gaussian and (u0, v0) is the
frequency of the complex sinusoid.

DLAs attempt to solve some of the con-
ceptual problems of conventional artificial
neural networks, the most prominent of
these being the representation of syntac-
tical relationships in neural networks.
DLAs use synaptic plasticity and are
able to form sets of neurons grouped into
structured graphs while maintaining
the advantages of neural systems. Both

Buhmann et al. [1990] and Lades
et al. [1993] used Gabor-based wavelets
(Figure 10(a)) as the features. As de-
scribed in Lades et al. [1993] DLA’s basic
mechanism, in addition to the connection
parameter Tij betweeen two neurons (i,
j ), is a dynamic variable Jij . Only the
J -variables play the roles of synaptic
weights for signal transmission. The
T -parameters merely act to constrain the
J -variables, for example, 0 ≤ Jij ≤ Tij .
The T -parameters can be changed slowly
by long-term synaptic plasticity. The
weights Jij are subject to rapid modifi-
cation and are controlled by the signal
correlations between neurons i and j .
Negative signal correlations lead to a
decrease and positive signal correlations
lead to an increase in Jij . In the absence
of any correlation, Jij slowly returns to a
resting state, a fixed fraction of Tij . Each
stored image is formed by picking a rect-
angular grid of points as graph nodes. The
grid is appropriately positioned over the
image and is stored with each grid point’s
locally determined jet (Figure 10(a)), and
serves to represent the pattern classes.
Recognition of a new image takes place by
transforming the image into the grid of
jets, and matching all stored model graphs
to the image. Conformation of the DLA
is done by establishing and dynamically
modifying links between vertices in the
model domain.

The DLA architecture was recently ex-
tended to Elastic Bunch Graph Match-
ing [Wiskott et al. 1997] (Figure 10). This
is similar to the graph described above,
but instead of attaching only a single jet
to each node, the authors attached a set
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of jets (called the bunch graph represen-
tation, Figure 10(b)), each derived from a
different face image. To handle the pose
variation problem, the pose of the face is
first determined using prior class infor-
mation [Kruger et al. 1997], and the “jet”
transformations under pose variation are
learned [Maurer and Malsburg 1996a].
Systems based on the EBGM approach
have been applied to face detection and
extraction, pose estimation, gender classi-
fication, sketch-image-based recognition,
and general object recognition. The suc-
cess of the EBGM system may be due to
its resemblance to the human visual sys-
tem [Biederman and Kalocsai 1998].

3.2.3. Hybrid Approaches. Hybrid ap-
proaches use both holistic and local
features. For example, the modular eigen-
faces approach [Pentland et al. 1994]
uses both global eigenfaces and local
eigenfeatures.

In Pentland et al. [1994], the capa-
bilities of the earlier system [Turk and
Pentland 1991] were extended in several
directions. In mugshot applications, usu-
ally a frontal and a side view of a person
are available; in some other applications,
more than two views may be appropriate.
One can take two approaches to handling
images from multiple views. The first
approach pools all the images and con-
structs a set of eigenfaces that represent
all the images from all the views. The
other approach uses separate eigenspaces
for different views, so that the collection of
images taken from each view has its own
eigenspace. The second approach, known
as view-based eigenspaces, performs
better.

The concept of eigenfaces can be
extended to eigenfeatures, such as
eigeneyes, eigenmouth, etc. Using a
limited set of images (45 persons, two
views per person, with different facial
expressions such as neutral vs. smiling),
recognition performance as a function of
the number of eigenvectors was measured
for eigenfaces only and for the combined
representation. For lower-order spaces,
the eigenfeatures performed better than

Fig. 11. Comparison of matching: (a) test
views, (b) eigenface matches, (c) eigenfea-
ture matches [Pentland et al. 1994].

the eigenfaces [Pentland et al. 1994];
when the combined set was used, only
marginal improvement was obtained.
These experiments support the claim that
feature-based mechanisms may be useful
when gross variations are present in the
input images (Figure 11).

It has been argued that practical sys-
tems should use a hybrid of PCA and
LFA (Appendix B in Penev and Atick
[1996]). Such view has been long held in
the psychology community [Bruce 1988].
It seems to be better to estimate eigen-
modes/eigenfaces that have large eigen-
values (and so are more robust against
noise), while for estimating higher-order
eigenmodes it is better to use LFA. To sup-
port this point, it was argued in Penev
and Atick [1996] that the leading eigenpic-
tures are global, integrating, or smooth-
ing filters that are efficient in suppress-
ing noise, while the higher-order modes
are ripply or differentiating filters that are
likely to amplify noise.

LFA is an interesting biologically in-
spired feature analysis method [Penev
and Atick 1996]. Its biological motivation
comes from the fact that, though a huge
array of receptors (more than six million
cones) exist in the human retina, only a
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Fig. 12. LFA kernels K (xi , y) at different grids xi [Penev and Atick 1996].

small fraction of them are active, corre-
sponding to natural objects/signals that
are statistically redundant [Ruderman
1994]. From the activity of these sparsely
distributed receptors, the brain has to
discover where and what objects are in
the field of view and recover their at-
tributes. Consequently, one expects to rep-
resent the natural objects/signals in a sub-
space of lower dimensionality by finding
a suitable parameterization. For a lim-
ited class of objects such as faces which
are correctly aligned and scaled, this sug-
gests that even lower dimensionality can
be expected [Penev and Atick 1996]. One
good example is the successful use of the
truncated PCA expansion to approximate
the frontal face images in a linear sub-
space [Kirby and Sirovich 1990; Sirovich
and Kirby 1987].

Going a step further, the whole face re-
gion stimulates a full 2D array of recep-
tors, each of which corresponds to a lo-
cation in the face, but some of these re-
ceptors may be inactive. To explore this
redundancy, LFA is used to extract to-
pographic local features from the global
PCA modes. Unlike PCA kernels �i which
contain no topographic information (their
supports extend over the entire grid of
images), LFA kernels (Figure12) K (xi, y)
at selected grids xi have local support.10

10These kernels (Figure 12) indexed by grids xi are
similar to the ICA kernels in the first ICA system
architecture [Bartlett et al. 1998; Bell and Sejnowski
1995].

The search for the best topographic set of
sparsely distributed grids {xo} based on re-
construction error is called sparsification
and is described in Penev and Atick [1996].
Two interesting points are demonstrated
in this paper: (1) using the same number
of kernels, the perceptual reconstruction
quality of LFA based on the optimal set
of grids is better than that of PCA; the
mean square error is 227, and 184 for a
particular input; (2) keeping the second
PCA eigenmodel in LFA reconstruction re-
duces the mean square error to 152, sug-
gesting the hybrid use of PCA and LFA. No
results on recognition performance based
on LFA were reported. LFA is claimed to
be used in Visionics’s commercial system
FaceIt (Table II).

A flexible appearance model based
method for automatic face recognition was
presented in [Lanitis et al. 1995]. To iden-
tify a face, both shape and gray-level infor-
mation are modeled and used. The shape
model is an ASM; these are statistical
models of the shapes of objects which it-
eratively deform to fit to an example of
the shape in a new image. The statis-
tical shape model is trained on exam-
ple images using PCA, where the vari-
ables are the coordinates of the shape
model points. For the purpose of classifi-
cation, the shape variations due to inter-
class variation are separated from those
due to within-class variations (such as
small variations in 3D orientation and fa-
cial expression) using discriminant anal-
ysis. Based on the average shape of the
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Fig. 13. The face recognition scheme based on flexible appearance
model [Lanitis et al. 1995]. (Courtesy of A. Lanitis, C. Taylor, and T.
Cootes.)

shape model, a global shape-free gray-
level model can be constructed, again us-
ing PCA.11 To further enhance the ro-
bustness of the system against changes
in local appearance such as occlusions,
local gray-level models are also built
on the shape model points. Simple lo-
cal profiles perpendicular to the shape
boundary are used. Finally, for an input
image, all three types of information,
including extracted shape parameters,
shape-free image parameters, and local
profiles, are used to compute a Maha-
lanobis distance for classification as illus-
trated in Figure 13. Based on training 10
and testing 13 images for each of 30 indi-
viduals, the classification rate was 92% for
the 10 normal testing images and 48% for
the three difficult images.

The last method [Huang et al. 2003] that
we review in this category is based on re-
cent advances in component-based detec-
tion/recognition [Heisele et al. 2001] and
3D morphable models [Blanz and Vetter
1999]. The basic idea of component-based
methods [Heisele et al. 2001] is to decom-
pose a face into a set of facial components
such as mouth and eyes that are intercon-

11Recall that in Craw and Cameron [1996] and
Moghaddam and Pentland [1997] these shape-free
images are used as the inputs to the classifier.

ntected by a flexible geometrical model.
(Notice how this method is similar to the
EBGM system [Okada et al. 1998; Wiskott
et al. 1997] except that gray-scale compo-
nents are used instead of Gabor wavelets.)
The motivation for using components is
that changes in head pose mainly lead to
changes in the positions of facial compo-
nents which could be accounted for by the
flexibility of the geometric model. How-
ever, a major drawback of the system is
that it needs a large number of training
images taken from different viewpoints
and under different lighting conditions. To
overcome this problem, the 3D morphable
face model [Blanz and Vetter 1999] is ap-
plied to generate arbitrary synthetic im-
ages under varying pose and illumination.
Only three face images (frontal, semipro-
file, profile) of a person are needed to com-
pute the 3D face model. Once the 3D model
is constructed, synthetic images of size
58 × 58 are generated for training both
the detector and the classifer. Specifically,
the faces were rotated in depth from 0◦ to
34◦ in 2◦ increments and rendered with
two illumination models (the first model
consists of ambient light alone and the
second includes ambient light and a ro-
tating point light source) at each pose.
Fourteen facial components were used for
face detection, but only nine components
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that were not strongly overlapped and con-
tained gray-scale structures were used for
classification. In addition, the face region
was added to the nine components to form
a single feature vector (a hybrid method),
which was later trained by a SVM clas-
sifer [Vapnik 1995]. Training on three im-
ages and testing on 200 images per sub-
ject led to the following recognition rates
on a set of six subjects: 90% for the hybrid
method and roughly 10% for the global
method that used the face region only; the
false positive rate was 10%.

3.3. Summary and Discussion

Face recognition based on still images or
captured frames in a video stream can
be viewed as 2D image matching and
recognition; range images are not avail-
able in most commercial/law enforcement
applications. Face recognition based on
other sensing modalities such as sketches
and infrared images is also possible. Even
though this is an oversimplification of the
actual recognition problem of 3D objects
based on 2D images, we have focused on
this 2D problem, and we will address two
important issues about 2D recognition of
3D face objects in Section 6. Significant
progress has been achieved on various as-
pects of face recognition: segmentation,
feature extraction, and recognition of faces
in intensity images. Recently, progress has
also been made on constructing fully au-
tomatic systems that integrate all these
techniques.

3.3.1. Status of Face Recognition. After
more than 30 years of research and de-
velopment, basic 2D face recognition has
reached a mature level and many commer-
cial systems are available (Table II) for
various applications (Table I).

Early research on face recognition was
primarily focused on the feasibility ques-
tion, that is: is machine recognition of
faces possible? Experiments were usually
carried out using datasets consisting of
as few as 10 images. Significant advances
were made during the mid-1990s, with
many methods proposed and tested on
datasets consisting of as many as 100

images. More recently, practical meth-
ods have emerged that aim at more re-
alistic applications. In the recent com-
prehensive FERET evaluations [Phillips
et al. 2000; Phillips et al. 1998b; Rizvi
et al. 1998], aimed at evaluating dif-
ferent systems using the same large
database containing thousands of images,
the systems described in Moghaddam and
Pentland [1997]; Swets and Weng [1996b];
Turk and Pentland [1991]; Wiskott et al.
[1997]; Zhao et al. [1998], as well as
others, were evaluated. The EBGM sys-
tem [Wiskott et al. 1997], the subspace
LDA system [Zhao et al. 1998], and the
probabilistic eigenface system [Moghad-
dam and Pentland 1997] were judged to
be among the top three, with each method
showing different levels of performance on
different subsets of sequestered images.
A brief summary of the FERET evalua-
tions will be presented in Section 5. Re-
cently, more extensive evaluations using
commercial systems and thousands of im-
ages have been performed in the FRVT
2000 [Blackburn et al. 2001] and FRVT
2002 [Phillips et al. 2003] tests.

3.3.2. Lessons, Facts and Highlights. Dur-
ing the development of face recognition
systems, many lessons have been learned
which may provide some guidance in the
development of new methods and systems.

—Advances in face recognition have come
from considering various aspects of this
specialized perception problem. Earlier
methods treated face recognition as a
standard pattern recognition problem;
later methods focused more on the rep-
resentation aspect, after realizing its
uniqueness (using domain knowledge);
more recent methods have been con-
cerned with both representation and
recognition, so a robust system with
good generalization capability can be
built. Face recognition continues to
adopt state-of-the-art techniques from
learning, computer vision, and pattern
recognition. For example, distribution
modeling using mixtures of Gaussians,
and SVM learning methods, have been
used in face detection/recognition.
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—Among all face detection/recognition
methods, appearance/image-based ap-
proaches seem to have dominated up
to now. The main reason is the strong
prior that all face images belong to a face
class. An important example is the use
of PCA for the representation of holistic
features. To overcome sensitivity to geo-
metric change, local appearance-based
approaches, 3D enhanced approaches,
and hybrid approaches can be used.
The most recent advances toward fast
3D data acquisition and accurate 3D
recognition are likely to influence future
developements.12

—The methodological difference between
face detection and face recognition may
not be as great as it appears to be. We
have observed that the multiclass face
recognition problem can be converted
into a two-class “detection” problem by
using image differences [Moghaddam
and Pentland 1997]; and the face de-
tection problem can be converted into a
multiclass “recognition” problem by us-
ing additional nonface clusters of nega-
tive samples [Sung and Poggio 1997].

—It is well known that for face detection,
the image size can be quite small. But
what about face recognition? Clearly the
image size cannot be too small for meth-
ods that depend heavily on accurate
feature localization, such as graph
matching methods [Okada et al. 1998].
However, it has been demonstrated that
the image size can be very small for
holistic face recognition: 12 × 11 for the
subspace LDA system [Zhao et al. 1999],
14×10 for the PDBNN system [Lin et al.
1997], and 18 × 24 for human percep-
tion [Bachmann 1991]. Some authors
have argued that there exists a uni-
versal face subspace of fixed dimension;
hence for holistic recognition, image size
does not matter as long as it exceeds
the subspace dimensionality [Zhao et al.
1999]. This claim has been supported
by limited experiments using normal-
ized face images of different sizes, for

12Early work using range images was reported
in Gordon [1991].

example, from 12 × 11 to 48 × 42, to
obtain different face subspaces [Zhao
1999]. Indeed, slightly better perfor-
mance was observed when smaller im-
ages were used. One reason is that the
signal-to-noise ratio improves with the
decrease in image size.

—Accurate feature location is critical for
good recognition performance. This is
true even for holistic matching methods,
since accurate location of key facial fea-
tures such as eyes is required to normal-
ize the detected face [Yang et al. 2002;
Zhao 1999]. This was also verified in Lin
et al. [1997] where the use of smaller im-
ages led to slightly better performance
due to increased tolerance to location er-
rors. In Martinez [2002], a systematic
study of this issue was presented.

—Regarding the debate in the psychology
community about whether face recog-
nition is a dedicated process, the re-
cent success of machine systems that
are trained on large numbers of samples
seems to confirm recent findings sug-
gesting that human recognition of faces
may be not unique/dedicated, but needs
extensive training.

—When comparing different systems, we
should pay close attention to imple-
mentation details. Different implemen-
tations of a PCA-based face recogni-
tion algorithm were compared in Moon
and Phillips [2001]. One class of varia-
tions examined was the use of seven dif-
ferent distance metrics in the nearest-
neighbor classifier, which was found to
be the most critical element. This raises
the question of what is more impor-
tant in algorithm performance, the rep-
resentation or the specifics of the im-
plementation. Implementation details
often determine the performance of a
system. For example, input images are
normalized only with respect to trans-
lation, in-plane rotation, and scale in
Belhumeur et al. [1997], Swets and
Weng [1996b], Turk and Pentland
[1991], and Zhao et al. [1998], whereas
in Moghaddam and Pentland [1997]
the normalization also includes mask-
ing and affine warping to align the
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shape. In Craw and Cameron [1996],
manually selected points are used to
warp the input images to the mean
shape, yielding shape-free images. Be-
cause of this difference, PCA was a
good classifier in Moghaddam and Pent-
land [1997] for the shape-free repre-
sentations, but it may not be as good
for the simply normalized representa-
tions. Recently, systematic comparisons
and independent reevaluations of ex-
isting methods have been published
[Beveridge et al. 2001]. This is benefi-
cial to the research community. How-
ever, since the methods need to be reim-
plemented, and not all the details in the
original implementation can be taken
into account, it is difficult to carry out
absolutely fair comparisons.

—Over 30 years of research has provided
us with a vast number of methods and
systems. Recognizing the fact that each
method has its advantages and disad-
vantages, we should select methods and
systems appropriate to the application.
For example, local feature based meth-
ods cannot be applied when the input
image contains a small face region, say
15 × 15. Another issue is when to use
PCA and when to use LDA in building a
system. Apparently, when the number of
training samples per class is large, LDA
is the best choice. On the other hand,
if only one or two samples are available
per class (a degenerate case for LDA),
PCA is a better choice. For a more de-
tailed comparison of PCA versus LDA,
see Beveridge et al. [2001]; Martinez
and Kak [2001]. One way to unify PCA
and LDA is to use regularized subspace
LDA [Zhao et al. 1999].

3.3.3. Open Research Issues. Though
machine recognition of faces from still
images has achieved a certain level of
success, its performance is still far from
that of human perception. Specifically, we
can list the following open issues:

—Hybrid face recognition systems that
use both holistic and local features re-
semble the human perceptual system.
While the holistic approach provides a

quick recognition method, the discrim-
inant information that it provides may
not be rich enough to handle very large
databases. This insufficiency can be
compensated for by local feature meth-
ods. However, many questions need to
be answered before we can build such a
combined system. One important ques-
tion is how to arbitrate the use of holistic
and local features. As a first step, a sim-
ple, naive engineering approach would
be to weight the features. But how to
determine whether and how to use the
features remains an open problem.

—The challenge of developing face detec-
tion techniques that report not only the
presence of a face but also the accurate
locations of facial features under large
pose and illumination variations still re-
mains. Without accurate localization of
important features, accurate and robust
face recognition cannot be achieved.

—How to model face variation under re-
alistic settings is still challenging—for
example, outdoor environments, natu-
ral aging, etc.

4. FACE RECOGNITION FROM IMAGE
SEQUENCES

A typical video-based face recognition sys-
tem automatically detects face regions, ex-
tracts features from the video, and recog-
nizes facial identity if a face is present. In
surveillance, information security, and ac-
cess control applications, face recognition
and identification from a video sequence
is an important problem. Face recognition
based on video is preferable over using still
images, since as demonstrated in Bruce
et al. [1998] and Knight and Johnston
[1997], motion helps in recognition of (fa-
miliar) faces when the images are negated,
inverted or threshold. It was also demon-
strated that humans can recognize ani-
mated faces better than randomly rear-
ranged images from the same set. Though
recognition of faces from video sequence
is a direct extension of still-image-based
recognition, in our opinion, true video-
based face recognition techniques that co-
herently use both spatial and temporal
information started only a few years ago
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and still need further investigation. Sig-
nificant challenges for video-based recog-
nition still exist; we list several of them
here.

(1) The quality of video is low. Usually,
video acquisition occurs outdoors (or
indoors but with bad conditions for
video capture) and the subjects are not
cooperative; hence there may be large
illumination and pose variations in the
face images. In addition, partial occlu-
sion and disguise are possible.

(2) Face images are small. Again, due to
the acquisition conditions, the face im-
age sizes are smaller (sometimes much
smaller) than the assumed sizes in
most still-image-based face recogni-
tion systems. For example, the valid
face region can be as small as 15 ×
15 pixels,13 whereas the face image
sizes used in feature-based still image-
based systems can be as large as 128×
128. Small-size images not only make
the recognition task more difficult, but
also affect the accuracy of face segmen-
tation, as well as the accurate detec-
tion of the fiducial points/landmarks
that are often needed in recognition
methods.

(3) The characteristics of faces/human
body parts. During the past 8 years,
research on human action/behavior
recognition from video has been very
active and fruitful. Generic description
of human behavior not particular to an
individual is an interesting and useful
concept. One of the main reasons for
the feasibility of generic descriptions of
human behavior is that the intraclass
variations of human bodies, and in par-
ticular faces, is much smaller than the
difference between the objects inside
and outside the class. For the same rea-
son, recognition of individuals within
the class is difficult. For example, de-
tecting and localizing faces is typically
much easier than recognizing a specific
face.

13Notice this is totally different from the situation
where we have images with large face regions but
the final face regions feed into a classifier is 15 × 15.

Before we examine existing video-based
face recognition algorithms, we briefly
review three closely related techniques:
face segmentation and pose estimation,
face tracking, and face modeling. These
techniques are critical for the realization
of the full potential of video-based face
recognition.

4.1. Basic Techniques of Video-Based Face
Recognition

In Chellappa et al. [1995], four computer
vision areas were mentioned as being im-
portant for video-based face recognition:
segmentation of moving objects (humans)
from a video sequence; structure estima-
tion; 3D models for faces; and nonrigid mo-
tion analysis. For example, in Jebara et al.
[1998] a face modeling system which es-
timates facial features and texture from
a video stream was described. This sys-
tem utilizes all four techniques: segmen-
tation of the face based on skin color to
initiate tracking; use of a 3D face model
based on laser-scanned range data to nor-
malize the image (by facial feature align-
ment and texture mapping to generate a
frontal view) and construction of an eigen-
subspace for 3D heads; use of structure
from motion (SfM) at each feature point
to provide depth information; and non-
rigid motion analysis of the facial fea-
tures based on simple 2D SSD (sum of
squared differences) tracking constrained
by a global 3D model. Based on the current
development of video-based face recogni-
tion, we think it is better to review three
specific face-related techniques instead of
the above four general areas. The three
video-based face-related techniques are:
face segmentation and pose estimation,
face tracking, and face modeling.

4.1.1. Face Segmentation and Pose Estima-
tion. Early attempts [Turk and Pentland
1991] at segmenting moving faces from an
image sequence used simple pixel-based
change detection procedures based on dif-
ference images. These techniques may run
into difficulties when multiple moving ob-
jects and occlusion are present. More so-
phisticated methods use estimated flow
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fields for segmenting humans in mo-
tion [Shio and Sklansky 1991]. More re-
cent methods [Choudhury et al. 1999;
McKenna and Gong 1998] have used mo-
tion and/or color information to speed up
the process of searching for possible face
regions. After candidate face regions are
located, still-image-based face detection
techniques can be applied to locate the
faces [Yang et al. 2002]. Given a face re-
gion, important facial features can be lo-
cated. The locations of feature points can
be used for pose estimation, which is im-
portant for synthesizing a virtual frontal
view [Choudhury et al. 1999]. Newly de-
veloped segmentation methods locate the
face and estimate its pose simultaneously
without extracting features [Gu et al.
2001; Li et al. 2001b]. This is achieved by
learning multiview face examples which
are labeled with manually determined
pose angles.

4.1.2. Face and Feature Tracking. After
faces are located, the faces and their fea-
tures can be tracked. Face tracking and
feature tracking are critical for recon-
structing a face model (depth) through
SfM, and feature tracking is essential
for facial expression recognition and gaze
recognition. Tracking also plays a key
role in spatiotemporal-based recognition
methods [Li and Chellappa 2001; Li et al.
2001a] which directly use the tracking in-
formation.

In its most general form, tracking is
essentially motion estimation. However,
general motion estimation has fundamen-
tal limitations such as the aperture prob-
lem. For images like faces, some regions
are too smooth to estimate flow accurately,
and sometimes the change in local appear-
ances is too large to give reliable flow.
Fortunately, these problems are alleviated
thanks to face modeling, which exploits
domain knowledge. In general, tracking
and modeling are dual processes: track-
ing is constrained by a generic 3D model
or a learned statistical model under de-
formation, and individual models are re-
fined through tracking. Face tracking can
be roughly divided into three categories:

(1) head tracking, which involves tracking
the motion of a rigid object that is perform-
ing rotations and translations; (2) facial
feature tracking, which involves tracking
nonrigid deformations that are limited by
the anatomy of the head, that is, articu-
lated motion due to speech or facial expres-
sions and deformable motion due to mus-
cle contractions and relaxations; and (3)
complete tracking, which involves track-
ing both the head and the facial features.

Early efforts focused on the first two
problems: head tracking [Azarbayejani
et al. 1993] and facial feature track-
ing [Terzopoulos and Waters 1993; Yuille
and Hallinan 1992]. In Azarbayejani et al.
[1993], an approach to head tracking using
points with high Hessian values was pro-
posed. Several such points on the head are
tracked and the 3D motion parameters of
the head are recovered by solving an over-
constrained set of motion equations. Facial
feature tracking methods may make use
of the feature boundary or the feature re-
gion. Feature boundary tracking attempts
to track and accurately delineate the
shape of the facial feature, for example, to
track the contours of the lips and mouth
[Terzopoulos and Waters 1993]. Feature
region tracking addresses the simpler
problem of tracking a region such as a
bounding box that surrounds the facial
feature [Black et al. 1995].

In Black et al. [1995], a tracking sys-
tem based on local parameterized mod-
els is used to recognize facial expressions.
The models include a planar model for
the head, local affine models for the eyes,
and local affine models and curvature for
the mouth and eyebrows. A face track-
ing system was used in Maurer and Mals-
burg [1996b] to estimate the pose of the
face. This system used a graph represen-
tation with about 20–40 nodes/landmarks
to model the face. Knowledge about faces
is used to find the landmarks in the
first frame. Two tracking systems de-
scribed in Jebara et al. [1998] and Strom
et al. [1999] model faces completely with
texture and geometry. Both systems use
generic 3D models and SfM to recover
the face structure. Jebara et al. [1998] re-
lied fixed feature points (eyes, nose tip),
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Table IV. Categorization of Video-Based Face Recognition Techniques
Approach Representative work
Still-image methods Basic methods [Turk and Pentland 1991; Lin et al. 1997;

Moghaddam and Pentland 1997; Okada et al. 1998; Penev and
Atick 1996; Wechsler et al. 1997; Wiskott et al. 1997]

Tracking-enhanced [Edwards et al. 1998; McKenna and Gong
1997, 1998; Steffens et al. 1998]

Multimodal methods Video- and audio-based [Bigun et al. 1998; Choudhury et al. 1999]
Spatiotemporal methods Feature trajectory-based [Li and Chellappa 2001; Li et al. 2001a]

Video-to video methods [Zhou et al. 2003]

while Strom et al. [1999] tracked only
points with high Hessian values. Also, Je-
bara et al. [1998] tracked 2D features in
3D by deforming them, while Strom et al.
[1999] relied on direct comparison of a 3D
model to the image. Methods have been
proposed in Black et al. [1998] and Hager
and Belhumeur [1998] to solve the vary-
ing appearance (both geometry and pho-
tometry) problem in tracking. Some of the
newest model-based tracking methods cal-
culate the 3D motions and deformations
directly from image intensities [Brand
and Bhotika 2001], thus eliminating the
information-lossy intermediate represen-
tations.

4.1.3. Face Modeling. Modeling of faces
includes 3D shape modeling and texture
modeling. For large texture variations due
to changes in illumination, we will address
the illumination problem in Section 6.
Here we focus on 3D shape modeling. 3D
models of faces have been employed in the
graphics, animation, and model-based im-
age compression literature. More compli-
cated models are used in applications such
as forensic face reconstruction from par-
tial information.

In computer vision, one of the most
widely used methods of estimating 3D
shape from a video sequence is SfM, which
estimates the 3D depths of interesting
points. The unconstrained SfM problem
has been approached in two ways. In the
differential approach, one computes some
type of flow field (optical, image, or nor-
mal) and uses it to estimate the depths
of visible points. The difficulty in this ap-
proach is reliable computation of the flow
field. In the discrete approach, a set of fea-
tures such as points, edges, corners, lines,
or contours are tracked over a sequence

of frames, and the depths of these fea-
tures are computed. To overcome the dif-
ficulty of feature tracking, bundle adjust-
ment [Triggs et al. 2000] can be used to
obtain better and more robust results.

Recently, multiview based 2D methods
have gained popularity. In Li et al. [2001b],
a model consisted of a sparse 3D shape
model learned from 2D images labeled
with pose and landmarks, a shape-and-
pose-free texture model, and an affine ge-
ometrical model. An alternative approach
is to use 3D models such as the deformable
model of DeCarlo and Metaxas [2000] or
the linear 3D object class model of Blanz
and Vetter [1999]. (In Blanz and Vetter
[1999] a morphable 3D face model con-
sisting of shape and texture was directly
matched to single/multiple input images;
as a consequence, head orientation, illumi-
nation conditions, and other parameters
could be free variables subject to optimiza-
tion.) In Blanz and Vetter [1999], real-time
3D modeling and tracking of faces was
described; a generic 3D head model was
aligned to match frontal views of the face
in a video sequence.

4.2. Video-Based Face Recognition

Historically, video face recognition origi-
nated from still-image-based techniques
(Table IV). That is, the system automati-
cally detects and segments the face from
the video, and then applies still-image face
recognition techniques. Many methods re-
viewed in Section 3 belong to this category:
eigenfaces [Turk and Pentland 1991],
probabilistic eigenfaces [Moghaddam
and Pentland 1997], the EBGM
method [Okada et al. 1998; Wiskott
et al. 1997], and the PDBNN method [Lin
et al. 1997]. An improvement over these
methods is to apply tracking; this can help

ACM Computing Surveys, Vol. 35, No. 4, December 2003.



428 Zhao et al.

in recognition, in that a virtual frontal
view can be synthesized via pose and
depth estimation from video. Due to the
abundance of frames in a video, another
way to improve the recognition rate is the
use of “voting” based on the recognition
results from each frame. The voting can
be deterministic, but probabilistic voting
is better in general [Gong et al. 2000;
McKenna and Gong 1998]. One drawback
of such voting schemes is the expense of
computing the deterministic/probabilistic
results for each frame.

The next phase of video-based face
recognition will be the use of multimodal
cues. Since humans routinely use multi-
ple cues to recognize identities, it is ex-
pected that a multimodal system will do
better than systems based on faces only.
More importantly, using multimodal cues
offers a comprehensive solution to the task
of identification that might not be achiev-
able by using face images alone. For exam-
ple, in a totally noncooperative environ-
ment, such as a robbery, the face of the
robber is typically covered, and the only
way to perform faceless identification
might be to analyize body motion charac-
teristics [Klasen and Li 1998]. Excluding
fingerprints, face and voice are the most
frequently used cues for identification.
They have been used in many multimodal
systems [Bigun et al. 1998; Choudhury
et al. 1999]. Since 1997, a dedicated con-
ference focused on video- and audio-based
person authentication has been held every
other year.

More recently, a third phase of video
face recognition has started. These meth-
ods [Li and Chellappa 2001; Li et al.
2001a] coherently exploit both spatial in-
formation (in each frame) and temporal in-
formation (such as the trajectories of fa-
cial features). A big difference between
these methods and the probabilistic voting
methods [McKenna and Gong 1998] is the
use of representations in a joint temporal
and spatial space for identification.

We first review systems that apply
still-image-based recognition to selected
frames, and then multimodal systems. Fi-
nally, we review systems that use spatial
and temporal information simultaneously.

In Wechsler et al. [1997], a fully auto-
matic person authentication system was
described which included video break, face
detection, and authentication modules.
Video skimming was used to reduce the
number of frames to be processed. The
video break module, corresponding to key-
frame detection based on object motion,
consisted of two units. The first unit im-
plemented a simple optical flow method; it
was used when the image SNR level was
low. When the SNR level was high, simple
pair-wise frame differencing was used to
detect the moving object. The face detec-
tion module consisted of three units: face
localization using analysis of projections
along the x- and y-axes; face region label-
ing using a decision tree learned from posi-
tive and negative examples taken from 12
images each consisting of 2759 windows
of size 8×8; and face normalization based
on the numbers of face region labels. The
normalized face images were then used
for authentication, using an RBF network.
This system was tested on three image se-
quences; the first was taken indoors with
one subject present, the second was taken
outdoors with two subjects, and the third
was taken outdoors with one subject under
stormy conditions. Perfect results were re-
ported on all three sequences, as verified
against a database of 20 still face images.

An access control system based on
person authentication was described
in McKenna and Gong [1997]. The system
combined two complementary visual cues:
motion and facial appearance. In order
to reliably detect significant motion, spa-
tiotemporal zero crossings computed from
six consecutive frames were used. These
motions were grouped into moving objects
using a clustering algorithm, and Kalman
filters were employed to track the grouped
objects. An appearance-based face detec-
tion scheme using RBF networks (similar
to that discussed in Rowley et al. [1998])
was used to confirm the presence of a
person. The face detection scheme was
“bootstrapped” using motion and object
detection to provide an approximate head
region. Face tracking based on the RBF
network was used to provide feedback to
the motion clustering process to help deal
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Fig. 14. Varying the most significant identity parameters (top) and
manipulating residual variation without affecting identity (bottom)
[Edwards et al. 1998].

with occlusions. Good tracking results
were demonstrated. In McKenna and
Gong [1998], this work was extended to
person authentication using PCA or LDA.
The authors argued that recognition
based on selected frames is not adequate
since important information is discarded.
Instead, they proposed a probabilistic
voting scheme; that is, face identification
was carried out continuously. Though they
gave examples demonstrating improved
performance in identifying 8 or 15 people
by using sequences, no performance
statistics were reported.

An appearance model based method for
video tracking and enhancing identifica-
tion was proposed in Edwards et al. [1998].
The appearance model is a combination
of the active shape model (ASM) [Cootes
et al. 1995] and the shape-free texture
model after warping the face into a mean
shape. Unlike Lanitis et al. [1995], which
used the two models separately, the au-
thors used a combined set of parameters
for both models. The main contribution
was the decomposition of the combined
model parameters into an identity sub-
space and an orthogonal residual subspace
using linear discriminant analysis. (See
Figure 14 for an illustration of separat-
ing identity and residue.) The residual
subspace would ideally contain intraper-
son variations caused by pose, lighting,
and expression. In addition, they pointed
out that optimal separation of identity
and residue is class-specific. For exam-
ple, the appearance change of a person’s
nose depends on its length, which is a
person-specific quantity. To correct this

class-specific information, a sequence of
images of the same class was used. Specif-
ically, a linear mapping was assumed to
capture the relation between the class-
specific correction to the identity sub-
space and the intraperson variation in the
residual subspace. Examples of face track-
ing and visual enhancement were demon-
strated, but no recognition experiments
were reported. Though this method is be-
lieved to enhance tracking and make it ro-
bust against appearance change, it is not
clear how efficient it is to learn the class-
specific information from a video sequence
that does not present much residual
variation.

In De Carlo and Metaxas [2000], a sys-
tem called PersonSpotter was described.
This system is able to capture, track,
and recognize a person walking toward
or passing a stereo CCD camera. It has
several modules, including a head tracker,
preselector, landmark finder, and identi-
fier. The head tracker determines the im-
age regions that are changing due to object
motion based on simple image differences.
A stereo algorithm then determines the
stereo disparities of these moving pixels.
The disparity values are used to com-
pute histograms for image regions. Re-
gions within a certain disparity interval
are selected and referred to as silhouettes.
Two types of detectors, skin color based
and convex region based, are applied to
these silhouette images. The outputs of
these detectors are clustered to form re-
gions of interest which usually correspond
to heads. To track a head robustly, tempo-
ral continuity is exploited in the form of
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the thresholds used to initiate, track, and
delete an object.

To find the face region in an image, the
preselector uses a generic sparse graph
consisting of 16 nodes learned from eight
example face images. The landmark finder
uses a dense graph consisting of 48 nodes
learned from 25 example images to find
landmarks such as the eyes and the nose
tip. Finally, an elastic graph matching
scheme is employed to identify the face.
A recognition rate of about 90% was
achieved; the size of the database is not
known.

A multimodal person recognition sys-
tem was described in Choudhury et al.
[1999]. This system consists of a face
recognition module, a speaker identifica-
tion module, and a classifier fusion mod-
ule. It has the following characteristics:
(1) the face recognition module can de-
tect and compensate for pose variations;
the speaker identification module can de-
tect and compensate for changes in the
auditory background; (2) the most reli-
able video frames and audio clips are se-
lected for recognition; (3) 3D information
about the head obtained through SfM is
used to detect the presence of an actual
person as opposed to an image of that
person.

Two key parts of the face recognition
module are face detection/tracking and
eigen-face recognition. The face is de-
tected using skin color information using
a learned model of a mixture of Gaussians.
The facial features are then located using
symmetry transforms and image intensity
gradients. Correlation-based methods are
used to track the feature points. The loca-
tions of these feature points are used to
estimate the pose of the face. This pose
estimate and a 3D head model are used
to warp the detected face image into a
frontal view. For recognition, the feature
locations are refined and the face is nor-
malized with eyes and mouth in fixed lo-
cations. Images from the face tracker are
used to train a frontal eigenspace, and
the leading 35 eigenvectors are retained.
Face recognition is then performed using
a probabilistic eigenface approach where
the projection coefficients of all images of

each person are modeled as a Gaussian
distribution.

Finally, the face and speaker recogni-
tion modules are combined using a Bayes
net. The system was tested in an ATM
scenario, a controlled environment. An
ATM session begins when the subject en-
ters the camera’s field of view and the
system detects his/her face. The system
then greets the user and begins the bank-
ing transaction, which involves a series
of questions by the system and answers
by the user. Data for 26 people were col-
lected; the normalized face images were
40 × 80 pixels and the audio was sam-
pled at 16 kHz. These experiments on
small databases and well-controlled en-
vironments showed that the combination
of audio and video improved performance,
and that 100% recognition and verification
were achieved when the image/audio clips
with highest confidence scores were used.

In Li and Chellappa [2001], a face ver-
ification system based on tracking facial
features was presented. The basic idea of
this approach is to exploit the temporal
information available in a video sequence
to improve face recognition. First, the fea-
ture points defined by Gabor attributes on
a regular 2D grid are tracked. Then, the
trajectories of these tracked feature points
are exploited to identify the person pre-
sented in a short video sequence. The pro-
posed tracking-for-verification scheme is
different from the pure tracking scheme
in that one template face from a database
of known persons is selected for track-
ing. For each template with a specific
personal ID, tracking can be performed
and trajectories can be obtained. Based
on the characteristics of these trajecto-
ries, identification can be carried out. Ac-
cording to the authors, the trajectories of
the same person are more coherent than
those of different persons, as illustrated
in Figure 15. Such characteristics can also
be observed in the posterior probabilities
over time by assuming different classes.
In other words, the posterior probabilities
for the true hypothesis tend to be higher
than those for false hypotheses. This in
turn can be used for identification. Test-
ing results on a small databases of 19
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Fig. 15. Corresponding feature points obtained from 20 frames: (a) result
of matching the same person to a video, (b) result of matching a different
person to the video, (c) trajectories of (a), (d) trajectories of (b) [Li and
Chellappa 2001].

individuals have suggested that perfor-
mance is favorable over a frame-to-frame
matching and voting scheme, especially
in the case of large lighting changes. The
testing result is based on comparison with
alternative hypotheses.

Some details about the tracking algo-
rithm are as follows [Li and Chellappa
2001]. The motion of facial feature points
is modeled as a global two-dimensional
(2D) affine transformation (accounting for
head motion) plus a local deformation (ac-
counting for residual motion that is due
to inaccuracies in the 2D affine model-
ing and other factors such as facial ex-
pression). The tracking problem has been
formulated as a Bayesian inference prob-
lem and sequential importance sampling
(SIS) [Liu and Chen 1998] (one form of SIS
is called Condensation [Isard and Blake
1996] in the computer vision literature)
proposed as an empirical solution to the
inference problem. Since SIS has difficulty
in high-dimensional spaces, a reparame-
terization that captures essentially only
the difference was used to facilitate the
computation.

While most face recognition algorithms
take still images as probe inputs, a video-
based face recognition approach that takes
video sequences as inputs has recently
been developed [Zhou et al. 2003]. Since
the detected face might be moving in the
video sequence, one has to deal with uncer-
tainty in tracking as well as in recognition.
Rather than resolving these two uncer-
tainties separately, Zhou et al. [2003] per-
formed simultaneous tracking and recog-
nition of human faces from a video
sequence.

In still-to-video face recognition, where
the gallery consists of still images, a time
series state space model is proposed to
fuse temporal information in a probe
video, which simultaneously character-
izes the kinematics and identity using a
motion vector and an identity variable,
respectively. The joint posterior distribu-
tion of the motion vector and the identity
variable is first estimated at each time
instant and then propagated to the next
time instant. Marginalization over the
motion vector yields a robust estimate of
the posterior distribution of the identity
variable and marginalization over the
identity variable yields a robust estimate
of the posterior distribution of the motion
vector, so that tracking and recognition
are handled simultaneously. A computa-
tionally efficient sequential importance
sampling (SIS) algorithm is used to esti-
mate the posterior distribution. Empirical
results demonstrate that, due to the prop-
agation of the identity variable over time,
degeneracy in the posterior probability
of the identity variable is achieved to
give improved recognition. The gallery
is generalized to videos in order to re-
alize video-to-video face recognition.
An exemplar-based learning strategy is
employed to automatically select video
representatives from the gallery, serving
as mixture centers in an updated likeli-
hood measure. The SIS algorithm is used
to approximate the posterior distribution
of the motion vector, the identity variable,
and the exemplar index. The marginal
distribution of the identity variable pro-
duces the recognition result. The model
formulation is very general and allows a
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Fig. 16. Identity surface [Li et al. 2001a].
(Courtesy of Y. Li, S. Gong, and H. Liddell.)

variety of image representations and
transformations. Experimental re-
sults using images/videos collected
at UMD, NIST/USF, and CMU with
pose/illumination variations have illus-
trated the effectiveness of this approach
in both still-to-video and video-to-video
scenarios with appropriate model choices.

In Li et al. [2001a], a multiview based
face recognition system was proposed to
recognize faces from videos with large
pose variations. To address the challeng-
ing pose issue, the concept of an iden-
tity surface that captures joint spatial and
temporal information was used. An iden-
tity surface is a hypersurface formed by
projecting all the images of one individ-
ual onto the discriminating feature space
parameterized on head pose (Figure 16).14

To characterize the head pose, two an-
gles, yaw and tilt, are used as basis coor-
dinates in the feature space. As plotted in
Figure 16, the other basis coordinates rep-
resent discriminating feature patterns of
faces; this will be discussed later. Based on
recovered pose information, a trajectory
of the input feature pattern can be con-
structed. The trajectories of features from
known subjects arranged in the same tem-
poral order can be synthesized on their re-
spective identity surfaces. To recognize a
face across views over time, the trajectory
for the input face is matched to the trajec-
tories synthesized for the known subjects.
This approach can be thought of as a gen-
eralized version of face recognition based
on single images taken at different poses.

14Notice that this view-based idea has already been
explored, for example, in Pentland et al. [1994].

Experimental results using twelve train-
ing sequences, each containing one sub-
ject, and new testing sequences of these
subjects were reported. Recognition rates
were 100% and 93.9%, using 10 and 2 KDA
(kernel discriminant analysis) vectors, re-
spectively.

Other techniques have also been used
to construct the discriminating basis in
the identity surface: kernel discriminant
analysis (KDA) [Mika et al. 1999] was
used to compute a nonlinear discriminat-
ing basis, and a dynamic face model is
used to extract a shape-and-pose-free fa-
cial texture pattern. The multiview dy-
namic face model [Li et al. 2001b] con-
sists of a sparse Point Distribution Model
(PDM) [Cootes et al. 1995], a shape-and-
pose-free texture model, and an affine ge-
ometrical model. The 3D shape vector of
a face is estimated from a set of 2D face
images in different views using landmark
points. Then a face image fitted by the
shape model is warped to the mean shape
in a frontal view, yielding a shape-and-
pose-free texture pattern.15 When part of
a face is invisible in an image due to rota-
tion in depth, the facial texture is recov-
ered from the visible side of the face using
the bilateral symmetry of faces. To obtain
a low-dimensional statistical model, PCA
was applied to the 3D shape patterns and
shape-and-pose-free texture patterns sep-
arately. To further suppress within-class
variations, the shape-and-pose-free tex-
ture patterns were further projected into
a KDA feature space. Finally, the iden-
tity surface can be approximated and con-
structed from discrete samples at fixed
poses using a piece-wise planar model.

4.3. Summary

The availability of video/image sequences
gives video-based face recognition a dis-
tinct advantage over still-image-based
face recognition: the abundance of tem-
poral information. However, the typically
low-quality images in video present a
significant challenge: the loss of spatial

15Notice that this procedure is very similar to
AAM [Cootes et al. 2001].
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information. The key to building a success-
ful video-based system is to use tempo-
ral information to compensate for the lost
spatial information. For example, a high-
resolution frame can in principle be recon-
structed from a sequence of low-resolution
video frames and used for recognition. A
further step is to use the image sequence
to reconstruct the 3D shape of the tracked
face object via SfM and thus enhance face
recognition performance. Finally, a com-
prehensive approach is to use spatial and
temporal information simultaneously for
face recognition. This is also supported by
related psychological studies.

However, many issues remain for exist-
ing systems:

—SfM is a common technique used in
computer vision for recovering 3D in-
formation from video sequences. How-
ever, a major obstacle exists to apply-
ing this technique in face recognition:
the accuracy of 3D shape recovery. Face
images contain smooth, textureless re-
gions and are often acquired under vary-
ing illumination,16 resulting in signifi-
cant difficulties in accurate recovery of
3D information. The accuracy issue may
not be very important for face detection,
but it is for face recognition, which must
differentiate the 3D shapes of similar
objects. One possible solution is the com-
plementary use of shape-from-shading,
which can utilize the illumination infor-
mation. A recent paper on using flow-
based SfM techniques for face modeling
is A. K. R. Chowdhury, and R. Chellappa
[2003].

—Up to now, the databases used in
many systems have been very small,
say 20 subjects. This is partially
due to the tremendous amount of
storage space needed for video se-
quences. Fortunately, relatively large
video databases exist, for example,
the XM2TV database [Messer et al.
1999], the BANCA database [Bailly-
Bailliere et al. 2003], and the addition
of video into the FERET and FRVT2002

16Stereo is less sensitive to illumination change but
still has difficulty in handling textureless regions.

databases. However, large-scale system-
atic evaluations are still lacking.

—Although we argue that it is best to
use both temporal and spatial infor-
mation for face recognition, existing
spatiotemporal methods have not yet
shown their full potential. We believe
that these types of methods deserve fur-
ther investigation.

During the past 8 years, recognition of
human behavior has been actively stud-
ied: facial expression recognition, hand
gesture recognition, activity recognition,
etc. As pointed out earlier, descriptions of
human behavior are useful and are eas-
ier to obtain than recognition of faces. Of-
ten they provide complementary informa-
tion for face recognition or additional cues
useful for identification. In principle, both
gender classification and facial expression
recognition can assist in the classification
of identity. For recent reviews on facial
expression recognition, see Donato et al.
[1999] and Pantic and Rothkrantz [2000].
We also believe that analysis of body move-
ments such as gait or hand gestures can
help in person recognition.

5. EVALUATION OF FACE RECOGNITION
SYSTEMS

Given the numerous theories and tech-
niques that are applicable to face recogni-
tion, it is clear that evaluation and bench-
marking of these algorithms is crucial.
Previous work on the evaluation of OCR
and fingerprint classification systems pro-
vided insights into how the evaluation of
algorithms and systems can be performed
efficiently. One of the most important facts
learned in these evaluations is that large
sets of test images are essential for ade-
quate evaluation. It is also extremely im-
portant that the samples be statistically as
similar as possible to the images that arise
in the application being considered. Scor-
ing should be done in a way that reflects
the costs of errors in recognition. Reject-
error behavior should be studied, not just
forced recognition.

In planning an evaluation, it is impor-
tant to keep in mind that the operation
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of a pattern recognition system is statis-
tical, with measurable distributions of
success and failure. These distributions
are very application-dependent, and no
theory seems to exist that can predict
them for new applications. This strongly
suggests that an evaluation should be
based as closely as possible on a specific
application.

During the past 5 years, several large,
publicly available face databases have
been collected and corresponding testing
protocols have been designed. The se-
ries of FERET evaluations [Phillips et al.
2000b, 1998; Rizvi et al. 1998]17 attracted
nine institutions and companies to partic-
ipate. They were succeeded by the series
of FRVT vendor tests. We describe here
the most important face databases and
their associated evaluation methods, in-
cluding the XM2VTS and BANCA [Bailly-
Bailliere et al. 2003] database.

5.1. The FERET Protocol

Until recently, there did not exist a com-
mon FRT evaluation protocol that in-
cluded large databases and standard eval-
uation methods. This made it difficult to
assess the status of FRT for real appli-
cations, even though many existing sys-
tems reported almost perfect performance
on small databases.

The first FERET evaluation test was
administered in August 1994 [Phillips
et al. 1998b]. This evaluation established
a baseline for face recognition algorithms,
and was designed to measure performance
of algorithms that could automatically lo-
cate, normalize, and identify faces. This
evaluation consisted of three tests, each
with a different gallery and probe set. (A
gallery is a set of known individuals, while
a probe is a set of unknown faces pre-
sented for recognition.) The first test mea-
sured identification performance from a
gallery of 316 individuals with one im-
age per person; the second was a false-
alarm test; and the third measured the ef-
fects of pose changes on performance. The
second FERET evaluation was adminis-

17http://www.itl.nist.gov/iad/humanid/feret/.

tered in March 1995; it consisted of a sin-
gle test that measured identification per-
formance from a gallery of 817 individ-
uals, and included 463 duplicates in the
probe set [Phillips et al. 1998b]. (A dupli-
cate is a probe for which the corresponding
gallery image was taken on a different day;
there were only 60 duplicates in the Aug94
evaluation.) The third and last evaluation
(Sep96) was administered in September
1996 and March 1997.

5.1.1. Database. Currently, the FERET
database is the only large database that is
generally available to researchers without
charge. The images in the database were
initially acquired with a 35-mm camera
and then digitized.

The images were collected in 15 sessions
between August 1993 and July 1996. Each
session lasted 1 or 2 days, and the location
and setup did not change during the ses-
sion. Sets of 5 to 11 images of each individ-
ual were acquired under relatively uncon-
strained conditions; see Figure 17. They
included two frontal views; in the first of
these (fa) a neutral facial expression was
requested and in the second (fb) a differ-
ent facial expression was requested (these
requests were not always honored). For
200 individuals, a third frontal view was
taken using a different camera and differ-
ent lighting; this is referred to as the fc
image. The remaining images were non-
frontal and included right and left profiles,
right and left quarter profiles, and right
and left half profiles. The FERET database
consists of 1564 sets of images (1199 orig-
inal sets and 365 duplicate sets)—a to-
tal of 14,126 images. A development set
of 503 sets of images were released to
researchers; the remaining images were
sequestered for independent evaluation.
In late 2000 the entire FERET database
was released along with the Sep96 eval-
uation protocols, evaluation scoring code,
and baseline PCA algorithms.

5.1.2. Evaluation. For details of the three
FERET evaluations, see Phillips et al.
[2000, 1998b] and Rizvi et al. [1998].
The results of the most recent FERET
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Fig. 17. Images from the FERET dataset; these images are of size 384×
256.

evaluation (Sep96) will be briefly reviewed
here. Because the entire FERET data set
has been released, the Sep96 protocol pro-
vides a good benchmark for performance of
new algorithms. For the Sep96 evaluation,
there was a primary gallery consisting of
one frontal image (fa) per person for 1196
individuals. This was the core gallery used
to measure performance for the following
four different probe sets:

—fb probes—gallery and probe images of
an individual taken on the same day
with the same lighting (1195 probes);

—fc probes—gallery and probe images of
an individual taken on the same day
with different lighting (194 probes);

—Dup I probes—gallery and probe im-
ages of an individual taken on different
days—duplicate images (722 probes);
and

—Dup II probes—gallery and probe im-
ages of an individual taken over a year
apart (the gallery consisted of 894 im-
ages; 234 probes).

Performance was measured using two
basic methods. The first measured identi-
fication performance, where the primary
performance statistic is the percentage
of probes that are correctly identified by
the algorithm. The second measured veri-
fication performance, where the primary
performance measure is the equal error
rate between the probability of false alarm
and the probability of correct verification.
(A more complete method of reporting
identification performance is a cumulative
match characteristic; for verification per-
formance it is a receiver operating charac-
teristic (ROC).)

The Sep96 evaluation tested the follow-
ing 10 algorithms:

—an algorithm from Excalibur Corpora-
tion (Carlsbad, CA)(Sept. 1996);

—two algorithms from MIT Media Labo-
ratory (Sept. 1996) [Moghaddam et al.
1996; Turk and Pentland 1991];

—three linear discriminant analysis-
based algorithms from Michigan State
University [Swets and Weng 1996b]
(Sept. 1996) and the University of Mary-
land [Etemad and Chellappa 1997; Zhao
et al. 1998] (Sept. 1996 and March
1997);

—a gray-scale projection algorithm from
Rutgers University [Wilder 1994] (Sept.
1996);

—an Elastic Graph Matching algorithm
from the University of Southern Cali-
fornia [Okada et al. 1998; Wiskott et al.
1997] (March 1997);

—a baseline PCA algorithm [Moon and
Phillips 2001; Turk and Pentland 1991];
and

—a baseline normalized correlation
matching algorithm.

Three of the algorithms performed
very well: probabilistic eigenface from
MIT [Moghaddam et al. 1996], sub-
space LDA from UMD [Zhao et al. 1998,
1999], and Elastic Graph Matching from
USC [Wiskott et al. 1997].

A number of lessons were learned from
the FERET evaluations. The first is that
performance depends on the probe cate-
gory and there is a difference between best
and average algorithm performance.

Another lesson is that the scenario
has an impact on performance. For
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identification, on the fb and duplicate
probes, the USC scores were 94% and 59%,
and the UMD scores were 96% and 47%.
However, for verification, the equal error
rates were 2% and 14% for USC, and 1%
and 12% for UMD.

5.1.3. Summary. The availability of the
FERET database and evaluation tech-
nology has had a significant impact on
progress in the development of face recog-
nition algorithms. The series of tests
has allowed advances in algorithm de-
velopment to be quantified—for exam-
ple, the performance improvements in the
MIT algorithms between March 1995 and
September 1996, and in the UMD al-
gorithms between September 1996 and
March 1997.

Another important contribution of the
FERET evaluations is the identification of
areas for future research. In general the
test results revealed three major problem
areas: recognizing duplicates, recognizing
people under illumination variations, and
recognizing them under pose variations.

5.1.4. FRVT 2000. The Sep96 FERET
evaluation measured performance on pro-
totype laboratory systems. After March
1997 there was rapid advancement in the
development of commercial face recogni-
tion systems. This advancement repre-
sented both a maturing of face recognition
technology, and the development of the
supporting system and infrastructure nec-
essary to create commercial off-the-shelf
(COTS) systems. By the beginning of 2000,
COTS face recognition systems were read-
ily available.

To assess the state of the art in COTS
face recognition systems the Face Recogni-
tion Vendor Test (FRVT) 200018 was orga-
nized [Blackburn et al. 2001]. FRVT 2000
was a technology evaluation that used the
Sep96 evaluation protocol, but was signif-
icantly more demanding than the Sep96
FERET evaluation.

Participation in FRVT 2000 was re-
stricted to COTS systems, with companies

18http://www.frvt.org.

from Australia, Germany, and the United
States participating. The five companies
evaluated were Banque-Tec International
Pty. Ltd., C-VIS Computer Vision und Au-
tomation GmbH, Miros, Inc., Lau Tech-
nologies, and Visionics Corporation.

A greater variety of imagery was used
in FRVT 2000 than in the FERET evalua-
tions. FRVT 2000 reported results in eight
general categories: compression, distance,
expression, illumination, media, pose, res-
olution, and temporal. There was no com-
mon gallery across all eight categories; the
sizes of the galleries and probe sets varied
from category to category.

We briefly summarize the results of
FRVT 2000. Full details can be found in
[Blackburn et al. 2001], and include iden-
tification and verification performance
statistics. The media experiments showed
that changes in media do not adversely
affect performance. Images of a person
were taken simultaneously on conven-
tional film and on digital media. The
compression experiments showed that
compression does not adversely affect per-
formance. Probe images compressed up to
40:1 did not reduce recognition rates. The
compression algorithm was JPEG.

FRVT 2000 also examined the effect of
pose angle on performance. The results
show that pose does not significantly affect
performance up to ±25◦, but that perfor-
mance is significantly affected when the
pose angle reaches ±40◦.

In the illumination category, two key
effects were investigated. The first was
lighting change indoors. This was equiv-
alent to the fc probes in FERET. For the
best system in this category, the indoor
change of lighting did not significantly
affect performance. A second experiment
tested recognition with an indoor gallery
and an outdoor probe set. Moving from in-
door to outdoor lighting significantly af-
fected performance, with the best system
achieving an identification rate of only
0.55.

The temporal category is equivalent to
the duplicate probes in FERET. To com-
pare progress since FERET, dup I and
dup II scores were reported. For FRVT
2000 the dup I identification rate was 0.63
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compared with 0.58 for FERET. The cor-
responding rates for dup II were 0.64 for
FRVT 2000 and 0.52 for FERET. These re-
sults showed that there was algorithmic
progress between the FERET and FRVT
2000 evaluations. FRVT 2000 showed that
two common concerns, the effects of com-
pression and recording media, do not af-
fect performance. It also showed that
future areas of interest continue to be du-
plicates, pose variations, and illumination
variations generated when comparing in-
door images with outdoor images.

5.1.5. FRVT 2002. The Face Recogni-
tion Vendor Test (FRVT) 2002 [Phillips
et al. 2003]18 was a large-scale evalua-
tion of automatic face recognition technol-
ogy. The primary objective of FRVT 2002
was to provide performance measures for
assessing the ability of automatic face
recognition systems to meet real-world re-
quirements. Ten participants were evalu-
ated under the direct supervision of the
FRVT 2002 organizers in July and August
2002.

The heart of the FRVT 2002 was the
high computational intensity test (HCInt).
The HCInt consisted of 121,589 opera-
tional images of 37,437 people. The im-
ages were provided from the U.S. Depart-
ment of State’s Mexican nonimmigrant
Visa archive. From this data, real-world
performance figures on a very large data
set were computed. Performance statistics
were computed for verification, identifica-
tion, and watch list tasks.

FRVT 2002 results showed that nor-
mal changes in indoor lighting do not sig-
nificantly affect performance of the top
systems. Approximately the same perfor-
mance results were obtained using two in-
door data sets, with different lighting, in
FRVT 2002. In both experiments, the best
performer had a 90% verification rate at
a false accept rate of 1%. On comparable
experiments conducted 2 years earlier in
FRVT 2000, the results of FRVT 2002 indi-
cated that there has been a 50% reduction
in error rates. For the best face recogni-
tion systems, the recognition rate for faces
captured outdoors, at a false accept rate of

1%, was only 50%. Thus, face recognition
from outdoor imagery remains a research
challenge area.

A very important question for real-
world applications is the rate of decrease
in performance as time increases between
the acquisition of the database of images
and new images presented to a system.
FRVT 2002 found that for the top systems,
performance degraded at approximately
5% per year.

One open question in face recognition
is: how does database and watch list size
effect performance? Because of the large
number of people and images in the FRVT
2002 data set, FRVT 2002 reported the
first large-scale results on this question.
For the best system, the top-rank iden-
tification rate was 85% on a database of
800 people, 83% on a database of 1,600,
and 73% on a database of 37,437. For ev-
ery doubling of database size, performance
decreases by two to three overall percent-
age points. More generally, identification
performance decreases linearly in the log-
arithm of the database size.

Previous evaluations have reported face
recognition performance as a function of
imaging properties. For example, previous
reports compared the differences in perfor-
mance when using indoor versus outdoor
images, or frontal versus nonfrontal im-
ages. FRVT 2002, for the first time, exam-
ined the effects of demographics on per-
formance. Two major effects were found.
First, recognition rates for males were
higher than females. For the top systems,
identification rates for males were 6% to
9% points higher than that of females.
For the best system, identification per-
formance on males was 78% and for fe-
males it was 79%. Second, recognition
rates for older people were higher than
for younger people. For 18- to 22-year-olds
the average identification rate for the top
systems was 62%, and for 38- to 42-year-
olds it was 74%. For every 10-year in-
crease in age, performance increased on
the average by approximately 5% through
age 63.

FRVT 2002 looked at two of these
new techniques. The first was the three-
dimensional morphable models technique
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of Blanz and Vetter [1999]. Morphable
models are a technique for improving
recognition of nonfrontal images. FRVT
2002 found that Blanz and Vetter’s tech-
nique significantly increased recognition
performance. The second technique is
recognition from video sequences. Using
FRVT 2002 data, recognition performance
using video sequences was the same as the
performance using still images.

In summary, the key lessons learned
in FRVT 2002 were: (1) given reason-
able controlled indoor lighting, the cur-
rent state of the art in face recognition
is 90% verification at a 1% false accept
rate. (2) Face Recognition in outdoor im-
ages is a research problem. (3) The use
of morphable models can significantly im-
prove nonfrontal face recognition. (3) Iden-
tification performance decreases linearly
in the logarithm of the size of the gallery.
(4) In face recognition applications, ac-
commodations should be made for demo-
graphic information since characteristics
such as age and sex can significantly affect
performance.

5.2. The XM2VTS Protocol

Multimodal methods19 are a very promis-
ing approach to user-friendly (hence ac-
ceptable), highly secure personal verifica-
tion. Recognition and verification systems
need training; the larger the training set,
the better the performance achieved. The
volume of data required for training a mul-
timodal system based on analysis of video
and audio signals is on the order of TBytes;
technology that allows manipulation and
effective use of such volumes of data has
only recently become available in the form
of digital video. The XM2VTS multimodal
database [Messer et al. 1999] contains four
recordings of 295 subjects taken over a pe-
riod of 4 months. Each recording contains
a speaking head shot and a rotating head
shot. Available data from this database
include high-quality color images, 32-kHz
16-bit sound files, video sequences, and a
3D model.

19http://www.ee.surrey.ac.uk/Research/VSSP/
xm2vtsdb/.

The XM2VTS database is an expan-
sion of the earlier M2VTS database
[Pigeon and Vandendorpe 1999]. The
M2VTS project (Multimodal Verification
for Teleservices and Security Applica-
tions), a European ACTS (Advanced Com-
munications Technologies and Services)
project, deals with access control by mul-
timodal identification of human faces.
The goal of the project was to improve
recognition performance by combining the
modalities of face and voice. The M2VTS
database contained five shots of each of
37 subjects. During each shot, the subjects
were asked to count from “0” to “9” in their
native language (most of the subjects were
French-speaking) and rotate their heads
from 0◦ to −90◦, back to 0◦, and then to
+90◦. They were then asked to rotate their
heads again with their glasses off, if they
wore any. Three subsequences were ex-
tracted from these video sequences: voice
sequences, motion sequences, and glasses-
off motion sequences. The voice sequences
can be used for speech verification, frontal
view face recognition, and speech/lips cor-
relation analysis. The other two sequences
are intended for face recognition only.

It was found that the subjects were rel-
atively difficult to recognize in the fifth
shot because it varied significantly in
face/voice/camera setup from the other
shots. Several experiments have been con-
ducted using the first four shots with the
goals of investigating

—text-dependent speaker verification
from speech,

—text-independent speaker verification
from speech,

—facial feature extraction and tracking
from moving images,

—verification from an overall frontal view,
—verification from lip shape,
—verification from depth information (ob-

tained using structured light),
—verification from a profile, and
—synchronization of speech and lip move-

ment.

5.2.1. Database. The XM2VTS database
differs from the M2VTS database
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primarily in the number of subjects (295
rather than 37). The M2VTS database
contains five shots of each subject taken
at sessions over a period of 3 months; the
XM2VTS database contains eight shots of
each subject taken at four sessions over a
period of 4 months (so that each session
contains two repetitions of the sequence).
The XM2VTS database was acquired
using a Sony VX1000E digital camcorder
and a DHR1000UX digital VCR.

In the XM2VTS database, the first shot
is a speaking head shot. Each subject, who
wore a clip-on microphone, was asked to
read three sentences that were written
on a board positioned just below the cam-
era. The subjects were asked to read the
three simple sentences twice at their nor-
mal pace and to pause briefly at the end of
each sentence.

The second shot is a rotating head se-
quence. Each subject was asked to ro-
tate his/her head to the left, to the right,
up, and down, and finally to return to
the center. The subjects were told that
a full profile was required and were
asked to repeat the entire sequence twice.
The same sequence was used in all four
sessions.

An additional dataset containing a 3D
model of each subject’s head was acquired
during each session using a high-precision
stereo-based 3D camera developed by the
Turing Institute.20

5.2.2. Evaluation. The M2VTS Lau-
sanne protocol was designed to evaluate
the performance of vision- and speech-
based person authentication systems on
the XM2VTS database. This protocol was
defined for the task of verification. The
features of the observed person are com-
pared with stored features corresponding
to the claimed identity, and the system
decides whether the identity claim is true
or false on the basis of a similarity score.
The subjects whose features are stored in
the system’s database are called clients,
whereas persons claiming a false identity
are called imposters.

20Turing Institute Web address: http://www.turing.
gla.ac.uk/.

The database is divided into three parts:
a training set, an evaluation set, and a test
set. The training set is used to build client
models. The evaluation set is used to com-
pute client and imposter scores. On the
basis of these scores, a threshold is cho-
sen that determines whether a person is
accepted or rejected. In multimodal clas-
sification, the evaluation set can also be
used to optimally combine the outputs of
several classifiers. The test set is selected
to simulate a real authentication scenario.
295 subjects were randomly divided into
200 clients, 25 evaluation imposters, and
70 test imposters. Two different evalu-
ation configurations were used with dif-
ferent distributions of client training and
client evaluation data. For more details,
see Messer et al. [1999].

In order to collect face verification re-
sults on this database using the Lau-
sanne protocol, a contest was organized
in conjuction with ICPR 2000 (the Inter-
national Conference on Pattern Recogni-
tion). There were twelve algorithms from
four partipicants in this contest [Matas
et al. 2000]: an EBGM algorithm from
IDIAP (Daller Molle Institute for Per-
ceptual Artificial Intelligence), a slightly
modified EBGM algorithm from Aristo-
tle University of Thessaloniki, a FND-
based (Fractal Neighbor Distance) algo-
rithm from the University of Sydney, and
eight variants of LDA algorithms and one
SVM algorithm from the University of
Surrey. The performance measures of a
verification system are the false accep-
tance rate (FA) and the false rejection rate
(FR). Both FA and FR are influenced by
an acceptance threshold. According to the
Lausanne protocol, the threshold is set to
satisfy certain performance levels on the
evaluation set. The same threshold is ap-
plied to the test data and FA and FR on
the test data are computed. The best re-
sults of FA and FR on the test data (FA/FR:
2.3%/2.5% and 1.2%/1.0% for evaulation
configurations I and II, respectively) were
obtained using an LDA algorithm with a
non-Euclidean metric (University of Sur-
rey) when the threshold was set so that
FA was equal to FB on the evaulation re-
sult. This result seems to concur with the
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equal error rates reported in the FERET
protocol. In addition, FA and FR on the
test data were reported when the thresh-
old was set set so that FA or FB was zero
on the evaulation result. For more details
on the results, see Matas et al. [2000].

5.2.3. Summary. The results of the
M2VTS/XM2VTS projects can be used
for a broad range of applications. In
the telecommunication field, the results
should have a direct impact on network
services where security of information
and access will become increasingly
important. (Telephone fraud in the U.S.
has been estimated to cost several billion
dollars a year.)

6. TWO ISSUES IN FACE RECOGNITION:
ILLUMINATION AND POSE VARIATION

In this section, we discuss two important
issues that are related to face recogni-
tion. The best face recognition techniques
reviewed in Section 3 were successful in
terms of their recognition performance on
large databases in well-controlled envi-
ronments. However, face recognition in
an uncontrolled environment is still very
challenging. For example, the FERET
evaluations and FRVTs revealed that
there are at least two major challenges:
the illumination variation problem and
the pose variation problem. Though many
existing systems build in some sort of
performance invariance by applying pre-
processing methods such as histogram
equalization or pose learning, significant
illumination or pose change can cause se-
rious performance degradation. In addi-
tion, face images can be partially occluded,
or the system may need to recognize a per-
son from an image in the database that
was acquired some time ago (referred to
as the duplicate problem in the FERET
tests).

These problems are unavoidable when
face images are acquired in an uncon-
trolled, uncooperative environment, as in
surveillance video clips. It is beyond the
scope of this paper to discuss all these is-
sues and possible solutions. In this section
we discuss only two well-defined problems

and review approaches to solving them.
Pros and cons of these approaches are
pointed out so an appropriate approach
can be applied to a specific task. The ma-
jority of the methods reviewed here are
generative approaches that can synthe-
size virtual views under desired illumi-
nation and viewing conditions. Many of
the reviewed methods have not yet been
applied to the task of face recognition,
at least not on large databases.21 This
may be for several reasons; some meth-
ods may need many sample images per
person, pixel-wise accurate alignment of
images, or high-quality images for recon-
struction; or they may be computationally
too expensive to apply to recognition tasks
that process thousands of images in near-
real-time.

To facilitate discussion and analysis,
we adopt a varying-albedo Lambertian re-
flectance model that relates the image I
of an object to the object (p, q) [Horn and
Brooks 1989]:

I = ρ
1 + pPs + qQs√

1 + p2 + q2
√

1 + P2
s + Q2

s

, (6)

where (p, q), ρ are the partial derivatives
and varying albedo of the object, respec-
tively. (Ps, Qs, −1) represents a single dis-
tant light source. The light source can also
be represented by the illuminant slant and
tilt angles; slant α is the angle between
the opposite lighting direction and the pos-
itive z-axis, and tilt τ is the angle between
the opposite lighting direction and the x-z
plane. These angles are related to Ps and
Qs by Ps = tan α cos τ , Qs = tan α sin τ .
To simplify the notation, we replace the
constant

√
1 + P2

s + Q2
s by K . For easier

analysis, we assume that frontal face ob-
jects are bilaterally symmetric about the
vertical midlines of the faces.

21One exception is a recent report [Blanz and Vetter
2003] where faces were represented using 4448 im-
ages from the CMU-PIE databases and 1940 images
from the FERET database.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.



Face Recognition: A Literature Survey 441

Fig. 18. In each row, the same face appears differently under different illu-
minations (from the Yale face database).

6.1. The Illumination Problem in Face
Recognition

The illumination problem is illustrated
in Figure 18, where the same face ap-
pears different due to a change in light-
ing. The changes induced by illumination
are often larger than the differences be-
tween individuals, causing systems based
on comparing images to misclassify input
images. This was experimentally observed
in Adini et al. [1997] using a dataset of 25
individuals.

In Zhao [1999], an analysis was carried
out of how illumination variation changes
the eigen-subspace projection coefficients
of images under the assumption of a Lam-
bertian surface. Consider the basic expres-
sion for the subspace decomposition of a
face image I : I � IA +∑m

i=1 ai�i, where IA
is the average image, �i are the eigenim-
ages, and ai are the projection coefficients.
Assume that for a particular individual we
have a prototype image Ip that is a nor-
mally lighted frontal view (Ps = 0, Qs = 0
in Equation (6)) in the database, and we
want to match it against a new image Ĩ of
the same class under lighting (Ps, Qs, −1).
The corresponding subspace projection co-
efficient vectors a = [a1, a2, . . . , am]T (for
Ip) and ã = [ã1, ã2, . . . , ãm]T (for Ĩ ) are
computed as follows:

ai = Ip � �i − IA � �i,

ãi = Ĩ � �i − IA � �i,
(7)

where � denotes the sum of all element-
wise products of two matrices (vectors). If

we divide the images and the eigenimages
into two halves, for example, left and right,
we have

ai = I L
p � �L

i + I R
p � �R

i − IA � �i,

ãi = Ĩ L � �L
i + Ĩ R � �R

i − IA � �i.

(8)

Based on Equation (6), the symmetric
property of eigenimages and face objects,
we have

ai = 2I L
p [x, y] � �L

i [x, y] − IA � �i,

ãi =
(

2
K

)(
I L

p [x, y] + I L
p [x, y]qL[x, y]Qs

)
� �L

i [x, y] − IA � �i,
(9)

leading to the following relation:

ã =
(

1
K

a
)

+ Qs

K

[
f a

1 , f a
2 , . . . , f a

m

]T

(10)
− K − 1

K
aA.,

where f a
i = 2(I L

p [x, y]qL[x, y])��L
i [x, y]

and aA is the projection coefficient vector
of the average image IA: [IA ��1, . . . , IA �
�m]. Now let us assume that the training
set is extended to include mirror images
as in Kirby and Sirovich [1990]. A similar
analysis can be carried out, since in such a
case the eigenimages are either symmet-
ric (for most leading eigenimages) or anti-
symmetric.

In general, Equation (11) suggests that
a significant illumination change can
seriously degrade the performance of
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Fig. 19. Changes of projection vectors due to class variation (a) and illumination change (b) is of the
same order [Zhao 1999].

subspace-based methods. Figure 19 plots
the projection coefficients for the same
face under different illuminations (α ∈
[00, 400], τ ∈ [00, 1800]) and compares
them against the variations in the projec-
tion coefficient vectors due to pure differ-
ences in class.

In general, the illumination problem is
quite difficult and has received consider-
able attention in the image understand-
ing literature. In the case of face recog-
nition, many approaches to this problem
have been proposed that make use of the
domain knowledge that all faces belong to
one face class. These approaches can be
divided into four types [Zhao 1999]: (1)
heuristic methods, for example, discarding
the leading principal components; (2) im-
age comparison methods in which appro-
priate image representations and distance
measures are used; (3) class-based meth-
ods using multiple images of the same
face in a fixed pose but under different
lighting conditions; and (4) model-based
approaches in which 3D models are em-
ployed.

6.1.1. Heuristic Approaches. Many exist-
ing systems use heuristic methods to com-
pensate for lighting changes. For exam-
ple, in Moghaddam and Pentland [1997]
simple contrast normalization was used
to preprocess the detected faces, while
in Sung and Poggio [1997] normalization

in intensity was done by first subtract-
ing a best-fit brightness plane and then
applying histogram equalization. In the
face eigen-subspace domain, it was sug-
gested and later experimentally verified in
Belhumeur et al. [1997] that by discard-
ing a few most significant principal com-
ponents, variations due to lighting can
be reduced. The plot in Figure 19(b) also
supports this observation. However, in or-
der to maintain system performance for
normally illuminated images, while im-
proving performance for images acquired
under changes in illumination, it must
be assumed that the first three principal
components capture only variations due to
lighting. Other heuristic methods based
on frontal-face symmetry have also been
proposed [Zhao 1999].

6.1.2. Image Comparison Approaches.
In Adini et al. [1997], approaches based
on image comparison using different
image representations and distance
measures were evaluated. The image
representations used were edge maps,
derivatives of the gray level, images
filtered with 2D Gabor-like functions,
and a representation that combines a
log function of the intensity with these
representations. The distance measures
used were point-wise distance, regional
distance, affine-GL (gray level) dis-
tance, local affine-GL distance, and log
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point-wise distance. For more details
about these methods and about the eval-
uation database, see Adini et al. [1997].
It was concluded that none of these
representations alone can overcome the
image variations due to illumination.

A recently proposed image comparison
method Jacobs et al. [1998] used a new
measure robust to illumination change.
The rationale for develop such a method
of directly comparing images is the poten-
tial difficulty of building a complete repre-
sentation of an object’s possible images as
suggested in [Belhumeur and Kriegman
1997]. The authors argued that it is not
clear whether it is possible to construct
the complete representation using a small
number of training images taken un-
der uncontrolled viewing conditions and
containing multiple light sources. It was
shown that given two images of an ob-
ject with unknown structure and albedo,
there is always a large family of solutions.
Even in the case of given light sources,
only two out of three independent compo-
nents of the Hessian of the surface can be
determined. Instead, the authors argued
that the ratio of two images of the same
object is simpler than if the images are
from different objects. Based on this ob-
servation, the complexity of the ratio of
two aligned images was proposed as the
similarity measure. More specifically, we
have

I1

I2
=

(
K2

K1

) (
1 + pI Ps,1 + qI Qs,1

1 + pI Ps,2 + qI Qs,2

)
(11)

for images of the same object, and

I1

J2
=

(
K2

K1

)(
ρI

ρJ

)(
1 + pI Ps,1 + qI Qs,1

1 + pJ Ps,2 + qJ Qs,2

)

(12)

×
√

1 + p2
J + q2

J

1 + p2
I + q2

I

for images of different objects. They chose
the integral of the magnitude of the
gradient of the function (ratio image)

as the measure of complexity and pro-
posed the following symmetric similarity
measure:

dG(I, J ) =
∫ ∫

min(I, J )
∥∥∥∥�(

I
J

)
∥∥∥∥

(13)∥∥∥∥�
J
I

∥∥∥∥ dx dy.

They noticed the similarity between this
measure and the measure that simply
compares the edges. It is also clear that
the measure is not strictly illumination-
invariant because it changes for a pair
of images of the same object when the
illumination changes. Experiments on
face recognition showed improved perfor-
mance over eigenfaces, which were some-
what worse than the illumination cone-
based method [Georghiades et al. 1998] on
the same set of data.

6.1.3. Class-Based Approaches. Under
the assumptions of Lambertian sur-
faces and no shadowing, a 3D linear
illumination subspace for a person
was constructed in Belhumeur and
Kriegman [1997], Hallinan [1994],
Murase and Nayar [1995], Ricklin-
Raviv and Shashua [1999], and Shashua
[1994] for a fixed viewpoint, using three
aligned faces/images acquired under
different lighting conditions. Under
ideal assumptions, recognition based on
this subspace is illumination-invariant.
More recently, an illumination cone has
been proposed as an effective method
of handling illumination variations, in-
cluding shadowing and multiple light
sources [Belhumeur and Kriegman 1997;
Georghiades et al. 1998]. This method is
an extension of the 3D linear subspace
method [Hallinan 1994; Shashua 1994]
and has the same drawback, requiring
at least three aligned training images
acquired under different lighting con-
ditions per person. A more detailed
review of this approach and its extension
to handle the combined illumination
and pose problem will be presented in
Section 6.2.
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Fig. 20. Testing the invariance of the quotient image (Q-image) to varying illu-
mination. (a) Original images of a novel face taken under five different illumina-
tions. (b) The Q-images corresponding to the novel images, computed with respect
to the bootstrap set of ten objects [Riklin-Raviv and Shashua 1999]. (Courtesy of
T. Riklin-Raviv and A. Shashua.)

More recently, a method based on quo-
tient images was introduced [Riklin-Raviv
and Shashua 1999]. Like other class-based
methods, this method assumes that the
faces of different individuals have the
same shape and different textures. Given
two objects a, b, the quotient image Q
is defined to be the ratio of their albedo
functions ρa/ρb, and hence is illumination-
invariant. Once Q is computed, the en-
tire illumination space of object a can be
generated by Q and a linear illumination
subspace constructed from three images
of object b. To make this basic idea work
in practice, a training set (called the boot-
strap set in the paper) is needed that con-
sists of images of N objects under various
lighting conditions, and the quotient im-
age of a novel object y is defined relative
to the average object of the bootstrap set.
More specifically, the bootstrap set con-
sists of 3N images taken from three fixed,
linearly independent light sources s1, s2,
and s3 that are not known. Under this as-
sumption, any light source s can be ex-
pressed as a linear combination of the si:
s = x1s1 + x2s2 + x3s3. The authors fur-
ther defined the normalized albedo func-
tion ρ of the bootstrap set as the squared
sum of the ρi, where ρi is the albedo func-
tion of object i. An interesting energy/cost
function is defined that is quite differ-
ent from the traditional bilinear form. Let
A1, A2, . . . , AN be m × 3 matrices whose
columns are images of object i (from the
bootstrap set) that contain the same m
pixels; then the bilinear energy/cost func-

tion [Freeman and Tenenbaum 2000] for
an image ys of object y under illumination
s is (

ys −
N∑

i=1

αi Aix

)2

, (14)

which is a bilinear problem in the N un-
knowns αi and 3 unknowns x. For compar-
ison, the proposed energy function is

N∑
i=1

(αi ys − Aix)2
. (15)

This formation of the energy function is
a major reason why the quotient image
method works better than “reconstruc-
tion” methods based on Equation (14) in
terms of smaller size of the bootstrap set
and less requirement for pixel-wise image
alignment. As pointed out by the authors,
another factor contributing to the success
of using only a small bootstrap set is that
the albedo functions occupy only a small
subspace. Figure 20 demonstrates the in-
variance of the quotient image against
change in illumination conditions; the
image synthesis results are shown in
Figure 21.

6.1.4. Model-Based Approaches. In
model-based approaches, a 3D face model
is used to synthesize the virtual image
from a given image under desired illu-
mination conditions. When the 3D model
is unknown, recovering the shape from
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Fig. 21. Image synthesis example. Original image (a) and its quotient image (b)
from the N = 10 bootstrap set. The quotient image is generated relative to the
average object of the bootstrap set, shown in (c), (d), and (e). Images (f) through (k)
are synthetic images created from (b) and (c), (d), (e) [Riklin-Raviv and Shashua
1999]. (Courtesy of T. Riklin-Raviv and A. Shashua.)

the images accurately is difficult without
using any priors. Shape-from-shading
(SFS) can be used if only one image is
available; stereo or structure from motion
can be used when multiple images of the
same object are available.

Fortunately, for face recognition the dif-
ferences in the 3D shapes of different face
objects are not dramatic. This is especially
true after the images are aligned and nor-
malized. Recall that this assumption was
used in the class-based methods reviewed
above. Using a statistical representation
of the 3D heads, PCA was suggested as a
tool for solving the parametric SFS prob-
lem [Atick et al. 1996]. An eigenhead ap-
proximation of a 3D head was obtained
after training on about 300 laser-scanned
range images of real human heads. The
ill-posed SFS problem is thereby trans-
formed into a parametric problem. The au-
thors also demonstrated that such a rep-
resentation helps to determine the light
source. For a new face image, its 3D head
can be approximated as a linear combina-
tion of eigenheads and then used to de-
termine the light source. Using this com-
plete 3D model, any virtual view of the face
image can be generated. A major draw-
back of this approach is the assumption
of constant albedo. This assumption does
not hold for most real face images, even
though it is the most common assumption
used in SFS algorithms.

To address the issue of varying albedo,
a direct 2D-to-2D approach was proposed
based on the assumption that front-view
faces are symmetric and making use of a
generic 3D model [Zhao et al. 1999]. Recall
that a prototype image Ip is a frontal view
with Ps = 0, Qs = 0. Substituting this into
Equation (6), we have

Ip[x, y] = ρ
1√

1 + p2 + q2
. (16)

Comparing Equations (6) and (16), we ob-
tain

Ip[x, y] = K
2(1 + qQs)

(I [x, y] + I [−x, y]).

(17)

This simple equation relates the proto-
type image Ip to I [x, y] + I [x, − y], which
is already available. The two advantages
of this approach are: (1) there is no need
to recover the varying albedo ρ[x, y]; (2)
there is no need to recover the full shape
gradients (p, q); q can be approximated
by a value derived from a generic 3D
shape. As part of the proposed automatic
method, a model-based light source iden-
tification method was also proposed to
improve existing source-from-shading al-
gorithms. Figure 22 shows some com-
parisons between rendered images ob-
tained using this method and using a
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Fig. 22. Image rendering comparison. The original images are shown
in the first column. The second column shows prototype images rendered
using the local SFS algorithm [Tsai and Shah 1994]. Prototype images
rendered using symmetric SFS are shown in the third column. Finally,
the fourth column shows real images that are close to the prototype
images [Zhao and Chellappa 2000].

local SFS algorithm [Tsai and Shah 1994].
Using the Yale and Weizmann databases
(Table V), significant performance im-
provements were reported when the pro-
totype images were used in a subspace
LDA system in place of the original in-
put images [Zhao et al. 1999]. In these ex-
periments, the gallery set contained about
500 images from various databases and
the probe set contained 60 images from
the Yale database and 96 images from the
Weizmann database.

Recently, a general method of ap-
proximating Lambertian reflectance us-
ing second-order spherical harmonics has
been reported [Basri and Jacobs 2001].
Assuming Lambertian objects under dis-
tant, isotropic lightng, the authors were
able to show that the set of all re-
flectance functions can be approximated
using the surface spherical harmonic ex-
pansion. Specifically, they have proved
that using a second-order (nine harmon-
ics, i.e., nine-dimensional 9D-space) ap-
proximation, the accuracy for any light
function exceeds 97.97%. They then ex-
tended this analysis to image formation,
which is a much more difficult problem due
to possible occlusion, shape, and albedo
variations. As indicated by the authors,
worst-case image approximation can be
arbitrarily bad, but most cases are good.
Using their method, an image can be de-
composed into so-called harmonic images,

which are produced when the object is
illuminated by harmonic functions. The
nine harmonic images of a face are plotted
in Figure 23. An interesting comparison
was made between the proposed method
and the 3D linear illumination subspace
methods [Hallinan 1994; Shashua 1994];
the 3D linear methods are just first-order
harmonic approximations without the DC
components.

Assuming precomputed object pose and
known color albedo/texture, the authors
reported an 86% correct recognition rate
when applying this technique to the task
of face recognition using a probe set
of 10 people and a gallery set of 42
people.

6.2. The Pose Problem in Face Recognition

It is not surprising that the performance
of face recognition systems drops signif-
icantly when large pose variations are
present, in the input images. This diffi-
culty was documented in the FERET and
FRVT test reports [Blackburn et al. 2001;
Phillips et al. 2002b, 2003], and was sug-
gested as a major research issue. When il-
lumination variation is also present, the
task of face recognition becomes even more
difficult. Here we focus on the out-of-plane
rotation problem, since in-plane rotation
is a pure 2D problem and can be solved
much more easily.
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Table V. Internet Resources for Research and Databases
Research pointers

Face recognition homepage www.cs.rug.nl/∼peterkr/FACE/frhp.html
Face detection homepage home.t-online.de/home/Robert.Frischholz/face.htm
Facial analysis homepage mambo.ucsc.edu/psl/fanl.html
Facial animiation homepage mambo.ucsc.edu/psl/fan.html

Face databases
FERET database http://www.itl.nist.gov/iad/humanid/feret/
XM2TVS database http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
UT Dallas database http://www.utdallas.edu/dept/bbs/FACULTY PAGES/otoole/

database.htm
Notre Dame database http://www.nd.edu/∼cvrl/HID-data.html
MIT face databases ftp://whitechapel.media.mit.edu/pub/images/
Shimon Edelman’s face database ftp://ftp.wisdom.weizmann.ac.il/pub/FaceBase/
CMU face detection database www.ius.cs.cmu.edu/IUS/dylan usr0/har/faces/test/
CMU PIE database www.ri.cmu.edu/projects/project 418.html
Stirling face database pics.psych.stir.ac.uk
M2VTS multimodal database www.tele.ucl.ac.be/M2VTS/
Yale face database cvc.yale.edu/projects/yalefaces/yalefaces.html
Yale face database B cvc.yale.edu/projects/yalefacesB/yalefacesB.html
Harvard face database hrl.harvard.edu/pub/faces
Weizmann face database www.wisdom.weizmann.ac.il/∼yael/
UMIST face database images.ee.umist.ac.uk/danny/database.html
Purdue University face database rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html
Olivetti face database www.cam-orl.co.uk/facedatabase.html
Oulu physics-based face database www.ee.oulu.fi/research/imag/color/pbfd.html

Fig. 23. The first nine harmonic images of a face
object (from left to right, top to bottom) [Basri and
Jacobs 2001]. (Courtesy of R. Basri and D. Jacobs.)

Earlier methods focused on constructing
invariant features [Wiskott et al. 1997] or
synthesizing a prototypical view (frontal
view) after a full model is extracted from
the input image [Lanitis et al. 1995].22

Such methods work well for small rota-
tion angles, but they fail when the angle
is large, say 60◦, causing some important
features to be invisible. Most proposed
methods are based on using large num-

22One exception is the multiview eigenfaces of
Pentland et al. [1994].

bers of multiview samples. This seems to
concur with the findings of the psychology
community; face perception is believed to
be view-independent for small angles, but
view-dependent for large angles.

To assess the pose problem more sys-
tematically, an attempt has been made to
classify pose problems [Zhao 1999; Zhao
and Chellappa 2000b]. The basic idea of
this analysis is to use a varying-albedo re-
flectance model (Equation (6)) to synthe-
size new images in different poses from a
real image, thus providing a tool for sim-
ulating the pose problem. More specifi-
cally, the 2D-to-2D image transformation
under 3D pose change has been studied.
The drawback of this analysis is the re-
striction of using a generic 3D model; no
deformation of this 3D shape was carried
out, though the authors suggested doing
so.

Researchers have proposed various
methods of handling the rotation prob-
lem. They can be divided into three
classes [Zhao 1999]: (1) multiview im-
age methods, when multiview database
images of each person are available; (2)
hybrid methods, when multiview training
images are available during training
but only one database image per person
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is available during recognition; and
(3) single-image/shape-based meth-
ods where no training is carried out.
Akamatsu et al. [1992], Beymer [1993],
Georghiades et al. [1999, 2001], and
Ullman and Basri [1991] are examples of
the first class and Beymer [1995], Beymer
and Poggio [1995], Cootes et al. [2000],
Maurer and Malsburg [1996a], Sali and
Ullman [1998], and Vetter and Poggio
[1997] of the second class. Up to now,
the second type of approach has been
the most popular. The third approach
does not seem to have received much
attention.

6.2.1. Multiview-Based Approaches. One
of the earliest examples of the first class of
approaches is the work of Beymer [1993],
which used a template-based correlation
matching scheme. In this work, pose
estimation and face recognition were
coupled in an iterative loop. For each
hypothesized pose, the input image was
aligned to database images corresponding
to that pose. The alignment was first
carried out via a 2D affine transformation
based on three key feature points (eyes
and nose), and optical flow was then used
to refine the alignment of each template.
After this step, the correlation scores of
all pairs of matching templates were used
for recognition. The main limitations of
this method, and other methods belonging
to this type of approach, are (1) many
different views per person are needed in
the database; (2) no lighting variations or
facial expressions are allowed; and (3) the
computational cost is high, since iterative
searching is involved.

More recently, an illumination-cone-
based [Belhumeur and Kriegman 1997]
image synthesis method [Georghiades
et al. 1999] has been proposed to han-
dle both pose and illumination problems
in face recognition. It handles illumina-
tion variation quite well, but not pose
variation. To handle variations due to
rotation, it needs to completely resolve
the GBR (generalized-bas-relief) ambigu-
ity and then reconstruct the Euclidean 3D
shape. Without resolving this ambiguity,

images from nonfrontal viewpoints syn-
thesized from a GBR reconstruction will
differ from a valid image by an affine
warp of the image coordinates.23 To ad-
dress GBR ambiguity, the authors pro-
posed exploiting face symmetry (to correct
tilt) and the fact that the chin and the fore-
head are at about the same height (to cor-
rect slant), and requiring that the range
of heights of the surface be about twice
the distance between the eyes (to correct
scale) [Georghiades et al. 2001]. They pro-
pose a pose- and illumination-invariant
face recognition method based on build-
ing illumination cones at each pose for
each person. Though conceptually this is a
good idea, in practice it is too expensive to
implement. The authors suggested many
ways of speeding up the process, including
first subsampling the illumination cone
and then approximating the subsampled
cone with a 11D linear subspace. Experi-
ments on building illumination cones and
on 3D shape reconstruction based on seven
training images per class were reported.
To visualize illumination-cone based im-
age synthesis, see Figure 24. Figure 25
demonstrates the effectiveness of image
synthesis under variable pose and lighting
after the GBR ambiguity is resolved. Al-
most perfect recognition results on ten in-
dividuals were reported using nine poses
and 45 viewing conditions.

6.2.2. Hybrid Approaches. Numerous al-
gorithms of the second type have been
proposed. These methods, which make
use of prior class information, are the
most successful and practical methods up
to now. We review several representa-
tive methods here: (1) a view-based eigen-
face method [Pentland et al. 1994], (2)
a graph matching-based method [Wiskott
et al. 1997], (3) a linear class-based
method [Blanz and Vetter 1999; Vetter
and Poggio 1997], (4) a vectorized im-
age representation based method [Beymer
1995; Beymer and Poggio 1995], and (5)
a view-based appearance model [Cootes

23GBR is a 3D affine transformation with three pa-
rameters: scale, slant, and tilt. A weak-perspective
imaging model is assumed.
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Fig. 24. The process of constructing the illumination cone. (a) The seven training im-
ages from Subset 1 (near frontal illumination) in frontal pose. (b) Images correspond-
ing to the columns of B̄. (c) Reconstruction up to a GBR transformation. On the left,
the surface was rendered with flat shading, that is, the albedo was assumed to be con-
stant across the surface, while on the right the surface was texture-mapped using the
first basis image of B̄ shown in Figure 24(b). (d) Synthesized images from the illumina-
tion cone of the face under novel lighting conditions but fixed pose. Note the large vari-
ations in shading and shadowing as compared to the seven training images. (Courtesy of
A. Georghiades, P. Belhumeur, and D. Kriegman.)

et al. 2000]. Some of the reviewed meth-
ods are very closely related—for example,
methods 3, 4, and 5. Despite their popular-
ity, these methods have two common draw-
backs: (1) they need many example images
to cover the range of possible views; (2) the
illumination problem is not explicitly ad-
dressed, though in principle it can be han-
dled if images captured under the same
pose but different illumination conditions
are available.

The popular eigenface approach [Turk
and Pentland 1991] to face recognition has
been extended to a view-based eigenface
method in order to achieve pose-invariant

recognition [Pentland et al. 1994]. This
method explicitly codes the pose informa-
tion by constructing an individual eigen-
face for each pose. More recently, a uni-
fied framework called the bilinear model
was proposed in Freeman and Tenenbaum
[2000] that can handle either pure pose
variation or pure class variation. (A bilin-
ear example is given in Equation (14) for
the illumination problem.)

In Wiskott et al. [1997], a robust face
recognition scheme based on EBGM was
proposed. The authors assumed a planar
surface patch at each feature point (land-
mark), and learned the transformations
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Fig. 25. Synthesized images under
variable pose and lighting gener-
ated from the training images shown
in Figure 24 and 25. (Courtesy of
A. Georghiades, P. Belhumeur, and
D. Kriegman.)

of “jets” under face rotation. Their re-
sults demonstrated substantial improve-
ment in face recognition under rotation.
Their method is also fully automatic, in-
cluding face localization, landmark detec-
tion, and flexible graph matching. The
drawback of this method is its require-
ment for accurate landmark localiza-
tion, which is not an easy task, espe-
cially when illumination variations are
present.

The image synthesis method in Vetter
and Poggio [1997] is based on the assump-
tion of linear 3D object classes and the ex-
tension of linearity to images (both shape
and texture) that are 2D projections of the
3D objects. It extends the linear shape
model (which is very similar to the ac-
tive shape model of Cootes et al. [1995])
from a representation based on feature
points to full images of objects. To imple-
ment this method, a correspondence be-
tween images of the input object and a
reference object is established using opti-
cal flow. Correspondences between the ref-
erence image and other example images
having the same pose are also computed.
Finally, the correspondence field for the
input image is linearly decomposed into
the correspondence fields for the exam-
ples. Compared to the parallel deforma-
tion scheme in Beymer and Poggio [1995],

Fig. 26. The best fit to a profile model is projected
to the frontal model to predict new views [Cootes
et al. 2000]. (Courtesy of T. Cootes, K. Walker, and
C. Taylor.)

this method reduces the need to compute
correspondences between images of differ-
ent poses. On the other hand, parallel de-
formation was able to preserve some pe-
culiarities of texture that are nonlinear
and that could be “erased” by linear meth-
ods. This method was extended in Sali
and Ullman [1998] to include an additive
error term for better synthesis. In Blanz
and Vetter [1999], a morphable 3D face
model consisting of shape and texture was
directly matched to single/multiple input
images. As a consequence, head orienta-
tion, illumination conditions, and other
parameters could be free variables subject
to optimization.

In Cootes et al. [2000], a view-based
statistical method was proposed based on
a small number of 2D statistical mod-
els (AAM). Unlike most existing methods
that can handle only images with rota-
tion angles up to, say 45◦, the authors ar-
gued that their method can handle even
profile views in which many features are
invisible. To deal with such large pose
variations, they needed sample views at
90◦ (full profile), 45◦ (quasiprofile), and
0◦ (frontal view). A key element that is
unique to this method is that for each
pose, a different set of features is used.
Given a single image of a new person,
all the models are used to match the im-
age, and estimation of the pose is achieved
by choosing the best fit. To synthesize
a new view from the input image, the
relationship between models at different
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views are learned. More specifically, the
following steps are needed: (1) remov-
ing the effects of orientation, (2) pro-
jecting into the identity subspace [Ed-
wards et al. 1998], (3) projecting across
into the subspace of the target model,
and (4) adding the appropriate orienta-
tion. Figure 26 demonstrates the syn-
thesis of a virtual view of a novel face
using this method. Results of track-
ing a face across large pose variations
and predicting novel views were reported
on a limited dataset of about 15 short
sequences.

Earlier work on multiview-based meth-
ods [Beymer 1993] was extended to ex-
plore the prior class information that is
specific to a face class and can be learned
from a set of prototypes [Beymer 1993,
1995]. The key idea of these methods is
the vectorized representation of the im-
ages at each pose; this is similar to view-
based AAM [Cootes et al. 2000]. A vec-
torized representation at each pose con-
sists of both shape and texture, which are
mapped into the standard/average refer-
ence shape. The reference shape is com-
puted off-line by averaging shapes consist-
ing of manually defined line segments sur-
rounding the eyes, eyebrows, nose, mouth,
and facial outline. The shape-free texture
is represented either by the original geo-
metrically normalized prototype images or
by PCA bases constructed from these im-
ages. Given a new image, a vectorization
procedure (similar to the iterative energy
minimization procedure in AAM [Cootes
et al. 2001]) is invoked that iterates be-
tween a shape step and a texture step.
In the texture step, the input image is
warped onto a previously computed align-
ment with the reference shape and then
projected into the eigen-subspace. In the
shape step, the PCA-reconstructed image
is used to compute the alignment for next
iteration. In both methods [Beymer 1995;
Beymer and Poggio 1995], an optical flow
algorithm is used to compute a dense cor-
respondence between the images. To syn-
thesize a virtual view at pose θ2 of a novel
image at pose θ1, the flow between these
poses of the prototype images is computed
and then warped to the novel image af-

Fig. 27. View synthesis by parallel deformation.
First (A) the prototype flow is measured between the
prototype image and the novel image at the same
pose, then (B) the flow is mapped onto the novel face,
and finally (C) the novel face is 2D-warped to the vir-
tual view [Beymer and Poggio 1995].

ter the correspondence between the new
image and the prototype image at pose
θ1 is computed; using the warped flow, a
virtual view can be generated by warping
the novel image. Figure 27 illustrates a
particular procedure adopted in Beymer
and Poggio [1995]: the parallel deforma-
tion needed to compute the flow between
the prototype image and the novel im-
age. An obvious drawback of this approach
is the difficulty of computing flow when
the prototype image and novel image are
dramatically different. To handle this is-
sue, Beymer [1995] proposed first subsam-
pling the estimated dense flow to locate
local features (line segments) based on
prior knowledge about both images, and
then matching the local features. Feed-
ing the virtual views into a simple recog-
nizer based on templates of eyes, nose, and
mouth, a recognition rate of 85% was re-
ported on a test set of 620 images (62 peo-
ple, 10 views per person) given one sin-
gle real view. Apparently this method is
not adequate, since it needs to synthe-
size all virtual views. A better strategy is
to detect the pose of the novel face and
synthesize only the prototype (say) frontal
view.
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6.2.3. Single-Image-Based Approaches.
Finally, the third class of approaches
includes low-level feature-based methods,
invariant-feature-based methods, and 3D
model-based methods. In Manjunath et al.
[1992], a Gabor wavelet-based feature
extraction method is proposed for face
recognition which is robust to small-angle
rotations. In these methods, face shape is
usually represented by either a polygonal
model or a mesh model which simulates
tissue. Due to its complexity and compu-
tational cost, no serious attempt to apply
this approach to face recognition has been
made, except for Gordon [1991], where
3D range data was available. In Zhao and
Chellappa [2000b], a unified approach
was proposed to solving both the pose and
illumination problems. This method is a
natural extension of the method proposed
in Zhao and Chellappa [2000] to handle
the illumination problem. Using a generic
3D model, they approximately solved the
correspondence problem involved in a
3D rotation, and performed an input-to-
prototype image computation. To address
the varying albedo issue in the estimation
of both pose and light source, the use
of a self-ratio image was proposed. The
self-ratio image rI [x, y] was defined as

rI [x, y] = I [x, y] − I [−x, y]
I [x, y] + I [−x, y]

(18)= p[x, y]Ps

1 + q[x, y]Qs
,

where I [x, y] is the original image and
I [−x, y] is the mirrored image.

Using the self-ratio image, which is
albedo-free, the authors formulated the
following combined estimation problem
for pose θ and light source (α, τ ):

(θ∗, α∗, τ ∗)
= argθ ,α,τ min[rIm(α, τ ) − rI (θ , α, τ )]2,

(19)

where rI (θ ,α,τ ) is the self-ratio image for
the virtual frontal view synthesized from
the original rotated image IR via image
warping and texture mapping, and rIm is
the self-ratio image generated from the 3D
face model. Improved recognition results

based on subspace LDA [Zhao et al. 1999]
were reported on a small database consist-
ing of frontal and quasiprofile images of
115 novel objects (size 48×42). In these ex-
periments, the frontal view images served
as the gallery images and nonfrontal view
images served as the probe images. Unfor-
tunately, estimation of a single pose value
for all the images was done manually. For
many images, this estimate was not good,
negating the performance improvement.

7. SUMMARY AND CONCLUSIONS

In this paper we have presented an ex-
tensive survey of machine recognition of
human faces and a brief review of related
psychological studies. We have considered
two types of face recognition tasks: one
from still images and the other from video.
We have categorized the methods used for
each type, and discussed their character-
istics and their pros and cons. In addi-
tion to a detailed review of representative
work, we have provided summaries of cur-
rent developments and of challenging is-
sues. We have also identified two impor-
tant issues in practical face recognition
systems: the illumination problem and the
pose problem. We have categorized pro-
posed methods of solving these problems
and discussed the pros and cons of these
methods. To emphasize the importance of
system evaluation, three sets of evalua-
tions were described: FERET, FRVT, and
XM2VTS.

Getting started in performing experi-
ments in face recognition is very easy. The
Colorado State University’s Evaluation of
Face Recognition Algorithms Web site,
http: //www.cs.colostate.edu/evalfacerec/,
has an archive of baseline face recog-
nition algorithms. Baseline algorithms
available are PCA, LDA, elastic bunch
graph matching, and Bayesian Intrap-
ersonal/Extrapersoanl Image Diffference
Classifier. Source code, and scripts for run-
ning the algorithms can be downloaded.
The Web site includes scripts for running
the FERET Sep96 evaluation protocol (the
FERET data set needs to be obtained from
the FERET Web site). The baseline algo-
rithms and FERET Sep96 protocol provide
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a framework for benchmarking new algo-
rithms. The scripts can be modified to run
different sets of images against the base-
line. For on-line resources related to face
recognition, such as research papers and
databases, see Table V.

We give below a concise summary of our
discussion, followed by our conclusions,
in the same order as the topics have ap-
peared in this paper:

—Machine recognition of faces has
emerged as an active research area
spanning disciplines such as image
processing, pattern recognition, com-
puter vision, and neural networks.
There are numerous applications of
FRT to commercial systems such as
face verification-based ATM and access
control, as well as law enforcement
applications to video surveillance, etc.
Due to its user-friendly nature, face
recognition will remain a powerful tool
in spite of the existence of very reliable
methods of biometric personal identifi-
cation such as fingerprint analysis and
iris scans.

—Extensive research in psychophysics
and the neurosciences on human recog-
nition of faces is documented in the lit-
erature. We do not feel that machine
recognition of faces should strictly fol-
low what is known about human recog-
nition of faces, but it is beneficial for en-
gineers who design face recognition sys-
tems to be aware of the relevant find-
ings. On the other hand, machine sys-
tems provide tools for conducting stud-
ies in psychology and neuroscience.

—Numerous methods have been proposed
for face recognition based on image in-
tensities [Chellappa et al. 1995]. Many
of these methods have been success-
fully applied to the task of face recog-
nition, but they have advantages and
disadvantages. The choice of a method
should be based on the specific require-
ments of a given task. For example,
the EBGM-based method [Okada et al.
1998] has very good performance, but
it requires an image size, for exam-
ple, 128 × 128, which severely restricts
its possible application to video-based

surveillance where the image size of the
face area is very small. On the other
hand, the subspace LDA method [Zhao
et al. 1999] works well for both large and
small images, for example, 96 × 84 or
12 × 11.

—Recognition of faces from a video se-
quence (especially a surveillance video)
is still one of the most challenging prob-
lems in face recognition because video is
of low quality and the images are small.
Often, the subjects of interest are not co-
operative, for example, not looking into
the camera. One particular difficulty
in these applications is how to obtain
good-quality gallery images. Neverthe-
less, video-based face recognition sys-
tems using multiple cues have demon-
strated good results in relatively con-
trolled environments.

—A crucial step in face recognition is the
evaluation and benchmarking of algo-
rithms. Two of the most important face
databases and their associated evalua-
tion methods have been reviewed: the
FERET, FRVT, and XM2VTS protocols.
The availability of these evaluations has
had a significant impact on progress in
the development of face recognition al-
gorithms.

—Although many face recognition tech-
niques have been proposed and have
shown significant promise, robust face
recognition is still difficult. There are
at least three major challenges: illumi-
nation, pose, and recognition in outdoor
imagery. A detailed review of methods
proposed to solve these problems has
been presented. Some basic problems re-
main to be solved; for example, pose dis-
crimination is not difficult but accurate
pose estimation is hard. In addition to
these two problems, there are other even
more difficult ones, such as recognition
of a person from images acquired years
apart.

—The impressive face recognition capabil-
ity of the human perception system has
one limitation: the number and types of
faces that can be easily distinguished.
Machines, on the other hand, can
store and potentially recognize as many
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people as necessary. Is it really possible
that a machine can be built that mimics
the human perceptual system without
its limitations on number and types?

To conclude our paper, we present a con-
jecture about face recognition based on
psychological studies and lessons learned
from designing algorithms. We conjecture
that different mechanisms are involved in
human recognition of familiar and unfa-
miliar faces. For example, it is possible
that 3D head models are constructed, by
extensive training for familiar faces, but
for unfamiliar faces, multiview 2D images
are stored. This implies that we have full
probability density functions for familiar
faces, while for unfamiliar faces we only
have discriminant functions.
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