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Abstract
We discuss how visual nonlinearity can be optimized for the precise
representation of environmental inputs. Such optimization leads to neural
signals with a compressively nonlinear input–output function the gradient of
which is matched to the cube root of the probability density function (PDF)
of the environmental input values (and not to the PDF directly as in histogram
equalization). Comparisons between theory and psychophysical and electro-
physiological data are roughly consistent with the idea that parvocellular (P)
cells are optimized for precision representation of colour: their contrast-
response functions span a range appropriately matched to the environmental
distribution of natural colours along each dimension of colour space. Thus P cell
codes for colour may have been selected to minimize error in the perceptual
estimation of stimulus parameters for natural colours. But magnocellular (M)
cells have a much stronger than expected saturating nonlinearity; this supports
the view that the function of M cells is mainly to detect boundaries rather than
to specify contrast or lightness.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

What nonlinear input–output function for a graded neural signal allows that signal to represent
environmental stimuli best, under the constraint of a definitely restricted neural response range?
This is the general problem we consider. For the sake of concreteness, we consider it in the
particular context of colour vision. In colour as in sensory processing in general, a quantitative
input has to be represented quantitatively, and different system designs may differ in the
precision with which they represent the input. The essence of the problem can be quickly
appreciated with the help of a crude analogy (which ultimately proves to be too crude): a
slicing of the input space. Imagine that successive, reliably different, levels of each output
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signal define bins or slices into which the system can reliably divide its inputs. The total
number of these slices is fixed for a given output signal by the range of output signal strength
and by the degree of intrinsic randomness (‘noise’) present in the output signal. However, by
suitable choice of the mapping from input to output these slices can be arranged to cover part
or all of the input range consecutively in any desired manner, with any desired variation in
slice thickness across the input range.

The visual system’s problem, which we take up in section 4 below, is: what is the best way
to slice the input space (e.g. the space of colour stimuli) using slices that can vary in thickness
(and also, in multi-dimensional cases such as that of colour, in direction)? Intuitively it makes
sense to make the slices thinner in parts of the input space where inputs are in practice densely
concentrated, even though this must be done at the expense of fine discrimination within ranges
of stimulus value that occur only seldom. For example, natural colours cluster around white (as
discussed in section 2 below), so it makes sense to slice colour space more finely around white
than in the outlying regions. Laughlin (1981, 1983) investigated this problem. His answer
is that the thickness of the slices should be chosen by the infomax criterion, maximizing the
mutual information between input and output. The infomax criterion leads to the arrangement
of slice thickness known as histogram equalization, in which slice thickness (or histogram bin
width) varies in inverse proportion to the input probability density (so that all bins are equally
populated). This arrangement minimizes the probability that pairs of randomly chosen inputs
will share the same bin and be confused. If we consider the bins or slices to correspond to equal
intervals in the output signal, histogram equalization is achieved by making the input–output
function y(x) linear with the integral of the probability density p(x) of the inputs. Thus near
white, the ‘output’ signals representing colour should have a steep gradient with the ‘input’
photoreceptor excitations, because the probability density of environmental colours is high in
this region of the input space. And for saturated colours, the gradients of the input–output
functions should be correspondingly shallow.

Although histogram equalization minimizes confusion rates, different considerations arise
when the output signal is contaminated by random variation (noise). In the presence of noise,
any stimulus is confused with a slightly different one each time it is presented, and it is important
to minimize the magnitude of these errors. Here the slicing metaphor becomes inexact, the
infomax criterion becomes too simple, and histogram equalization is no longer optimal. The
subject of this paper is the optimization of nonlinearity for precise representation of inputs
in the presence of noise. We assume initially that the noise originates at the output, after the
nonlinear encoding that is to be optimized, but we discuss how this assumption can be relaxed.

In section 5, we extend the treatment to systems in which multiple output signals are
available for coding a single input dimension. Electrophysiological studies of sensory neurons
commonly reveal an opponent code. The clearest instance of this is in the representation of
colour, where individual neurons at stages following the photoreceptor stage (Derrington et al
1984, DeValois and DeValois 1975) are excited by certain parts of the spectrum and inhibited
by others. This happens because these neurons are excited by one or two types of spectrally
selective photoreceptor and inhibited by others. A somewhat paradoxical consequence of this
encoding scheme is that the postreceptoral neurons are poorly responsive to the physiologically
and phenomenally neutral stimuli that are most abundant in the environment. Likewise in the
case of motion detection, directionally selective neurons respond poorly to static or nearly
static stimuli, with inhibitory or zero response for motion in directions opposed to the preferred
direction. Motion and colour thus adopt what we will call a ‘split range’ code, where an input
continuum such as colour, or (signed) input velocity, is divided at a physiological null point
(near-white, or zero velocity), and where separate neurons respond to inputs on opposite sides
of that null point. We show that by adopting a split range code the visual system improves
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the average precision in its representation of natural inputs in the presence of neural noise
introduced at the output. Finally (in section 6) we compare the optimal form of the split-
range nonlinearity with experimental estimates from psychophysics and from neurophysiology,
finding fair agreement in some comparisons and instructive disagreement in others.

2. The distribution of natural surface colours

We begin by considering the probability distribution of chromatic stimulus values. Our
analysis will depend particularly on the dispersion of these distributions. The stimulus values
we consider depend on the photoreceptor spectral sensitivities. Because the cone spectral
sensitivities are broad, with substantial overlap, the ratios of their excitations, on which
perception of colour depends, are generally not very large and the excitations of different
cone types are strongly correlated. This is especially striking for natural stimuli, which
themselves have broad spectral distributions. The correlation between the cone excitations
is for that reason higher for natural colours than for spectral lights. We have mainly relied
on two sets of measurements on natural colours (Brown 1994, Ruderman et al 1998). We
derived human L, M and S (short-wavelength sensitive) cone excitations from the measured
surface reflectances by integrating their crossproducts with the cone sensitivities of Stockman
et al (1993). For 574 haphazard samples of natural colours measured in San Diego by Richard
O Brown (in preparation), the correlation between L and M cone excitation is 0.985. These
samples were not selected in such a way as to be representative in any sense, and they may
have included a disproportionate number of highly chromatic surfaces since these would more
readily have caught the investigator’s eye. Ruderman, Cronin and Chiao (Ruderman et al 1998)
obtained spectral reflectance estimates, pixel by 3 min arc pixel, for 12 entire views of natural
environments; for this data set comprising nearly 200 000 pixels, the correlation between L

and M cone excitation is even higher at 0.9983.
Surface luminance is given simply by the summed excitations of L and M cones, which

we denote here simply by L and M (Eisner and MacLeod 1980, Lennie et al 1993). The
standard deviation of log 10(L + M) in Brown’s data set is 0.46, which corresponds to a factor
of three in luminance; for Ruderman et al data the value is 0.24, a little less than a factor
of two. The purely chromatic variations are conveniently indexed by two axes that represent
colours without regard for their intensity, each chromatic axis representing the excitation of a
specific photoreceptor per unit luminance. First, r = L/(L+M) forms the (roughly speaking)
‘red/green’ axis of a photoreceptor-based chromaticity diagram (Luther 1927, MacLeod and
Boynton 1979) and is proportional to L cone excitation per unit luminance. As the high
correlation between L and M implies, the standard deviation of r is far smaller than that for
luminance: only 7.5%, or 0.03 in the decimal logarithm for Brown’s data, and only 1% for the
entire scenes of Ruderman et al. For the remaining chromatic axis we adopt the luminance-
normalized S cone excitation, b = S/(L + M), which is low for yellows and very high for
violets. The standard deviation of b is an order of magnitude greater than for r , though still
lower than the one for luminance: 0.39 in log 10(b) or a factor of about 2.5 in b for Brown’s
data, and 0.114 in log 10(b) or 30% in b for the data of Ruderman et al (crosses in figure 1 show
the histogram for log 10(b)). In both these data sets, the average of the natural stimuli is near
to, but slightly yellower than, the equal energy white, which plots at a horizontal coordinate
of zero in figure 1.
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Figure 1. Crosses: frequency distribution of log 10(b) for Ruderman et al ’s set of natural colours;
b specifies S cone excitation per unit luminance, i.e. b = S/(L + M). Whites and greens are near
the middle of the distribution, with equal energy white represented at log 10(b) = 0. To the right lie
bluish colours; to the left, generally yellowish or reddish ones. Candidate input–output functions:
pleistochrome (circles), compared with linear and stepwise alternatives (curves).

3. Best directions for slicing colour space

It is obviously advantageous to limit the range of neurally represented stimulus values to the
range that naturally occurs. Because the dispersion of cone excitations from natural colours
is so much narrower in the red–green direction than in the luminance direction, this calls for a
recoding of colour into luminance and chromatic signals, using signals that (roughly speaking)
slice cone excitation space along its diagonals.

Others (Atick et al 1992, Buchsbaum and Gottschalk 1983, Fukurotani 1982) have justified
such a recoding with the claim that the optimal directions for slicing colour space are those
of the principal components of the distribution of photoreceptor excitations: neural signals
encoding these principal components will be uncorrelated. Note, however, that in the context
of a strictly linear analysis, where the neural signals are not assumed to be limited in range, a
recoding in terms of the principal components of the distribution of photoreceptor excitations
offers no advantage for colour discrimination: recoding does not change the effect of input
noise, and the influence of noise originating at the output can be made negligible simply by
making the gain (the slope of the function relating output to input) sufficiently large. In terms
of the slicing analogy, a given pattern of sufficiently fine slices with strictly linear spacing (with
different spacing, but unlimited range for each axis), can be rotated in any direction without
much affecting the number of boxes that are contained within a given ellipsoidal distribution
of environmental stimuli. Moreover, while principal components analysis can specify a set of
directions for slicing the input space, it cannot indicate a preferred origin of the coordinate
system in cone excitation space, and for that reason can give no rationale for opponent codes.

In this paper we suggest that the benefits of adopting a diagonal slicing of cone excitation
space result from the limited range of neural signals; this nonlinearity limits the number (and
thickness) of the slices that are created by each type of neuron. We present a rationale for
opponent neural codes which takes as its starting point the idea that the thickness, and not the
direction, of the slices should satisfy a principled requirement: specifically, the arrangement of
slice thicknesses should provide the most precise representation of natural colours. This crite-
rion allows determination of an optimum nonlinear code, subject to the constraint of a limited
output range. The optimal code with a single neuron per stimulus dimension is a sigmoid. For
two neurons per dimension it is a split range code employing rectifying opponent cells.
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4. Best choice of slice thickness: the pleistochrome

Initially we assume, for simplicity, that variability originating at the retinal output predominates
over sources of error at earlier stages. A rationale for this is that the optic nerve constitutes an
informational bottleneck for vision, where the number of nerve fibres and of nerve impulses
is relatively limited: much less, for instance, than the number of absorbed photons at daylight
light levels (Barlow 1965). Hence relatively large errors are introduced by random fluctuations
in the optic nerve fibre impulse counts (Bialek and Rieke 1992, Lee and others 1993).

When discrimination is limited by noise introduced into an output signal, good
discrimination around any input value can be achieved by making the gradient of the input–
output function at the relevant point as steep as necessary. But the limited total available range
in firing rate means that (for monotonic response functions) an increase in gradient at one point
has to be paid for by a decrease at other points within the input range, and hence by reduced
discrimination at those points. By suitable choice of a nonlinear response function, relative
discriminative precision can be distributed in any desired way over the range of input values.
So which choice is best? For example, what input–output function gives the smallest RMS
error in the estimated input, averaged over all naturally occurring cases?

Clearly it would be inefficient to make the code linear (with constant gradient and constant
discrimination) over an input range greater than what is naturally encountered. An example
is the straight line in figure 1, where the crosses represent the natural distribution of log 10(b)

from the data of Ruderman et al: this sacrifices discrimination among frequently occurring
stimuli in order to preserve discrimination in ranges where it is never needed. Also inefficient
is the opposite extreme: a response function that steps abruptly from minimum to maximum
firing rate at the peak of the distribution of natural colours (step function, figure 1). This
provides exquisite discrimination between bluish and yellowish colours, but completely fails
to distinguish among blues or among yellows. The best choice will be an intermediate one
(circles, figure 1): a gently curving sigmoid, which retains some discrimination in the tails
while slicing colour space most finely at the peak. More specifically, the optimal response
function has a gradient matched to the cube root of the probability density function of the input
distribution, as we now show.

Denote the input by x (which might be, for instance, some weighted sum of cone
excitations), and the noisy output (e.g. retinal ganglion cell firing rate) by the random variable
y = g(x) + n, where g(x) is a nonlinear function of x, and n is a random noise term with zero
mean and standard deviation σ(n). The noise impairs discrimination because the system will
confuse different values of x when they happen to elicit the same noisy output y. The range of
confusion (the slice thickness at the input) can be measured by the standard deviation of the
equivalent input noise, or by its square, the mean squared error at the input. It depends both on
the range of the output error and on the gradient of the input–output response function g(x).
As we will show, under a simplifying assumption the mean squared error in the represented
input value is proportional to the output variance σ2(n), and inversely to the square of g′(x),
the derivative of the function relating input to output.

The input that would elicit output y in the absence of noise is given by g−1(y). Treating
this as the perceptual estimate of the input3, a perceptual error equal to g−1(y) − x ensues

3 This estimate is not necessarily the optimal one: for instance, knowledge of the environmental probability density
function (PDF) of x might dictate a different choice. But the decoding of from y∗ to x∗y is not important for our
argument. The confusions that occur between different inputs, and that determine MSE(x) below, are invariant under
strictly monotonic transformations of the noise-contaminated signal y∗. Our conclusions argument could therefore be
developed without introducing the idea that perception involves an estimate of the input, by considering only instead
the distributions of stimuli that are confused, and attaching a cost to variance in that distribution.
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when a noise perturbation at the output causes an input x to elicit the output y. We consider
first the problem of minimizing the mean square of this error (other optimization criteria such
as minimization of absolute error are discussed below). With the simplifying assumption that
g(x) can be treated as linear over the limited range of confusion, we have

g−1(y) = g−1(g(x) + n) = x + n/g′(x).

Since the mean of n is zero, the mean of g−1(y) is simply the true input x, and the mean
squared error due to noise for a given input x, which we call MSE(x), is the variance of g−1(y).
This is proportional to the output variance σ2(n), which we initially assume to be fixed and
independent of x:

MSE(x) = σ2(n)

(g′(x))2
. (1)

The constant of proportionality is the inverse square of g′(x), the gradient of the input–
output function g(x) at x: where g(x) is steep, a smaller range of inputs suffices to span the
range of the noise that is added at the output.

Now denote the environmental probability distribution of x (for all stimuli encountered, or
of interest) by p(x). The mean squared error to be minimized, MSE, is the error due to noise,
MSE(x), averaged for all environmental inputs x, that is, the probability-weighted integral of
MSE(x) over x:

MSE =
∫

p(x)MSE(x) dx.

To see how this can be minimized, consider the effect of small variations in the response
gradient or incremental gain g′(x) around its optimal value. An increase in g′(x) at one value
of x has to be paid for with an equal decrease at other values of x, and in the optimal condition
the effects of such complementary changes must cancel, that is p(x) d(MSE(x))/dg′(x) must
be independent of x. Thus

d(MSE(x))/d(g′(x)) = α/p(x) (2)

with a constant α.
Since from (1)

d(MSE(x))/d(g′(x)) = −2(σ2(n))/(g′(x))3

the optimal condition occurs when the gradient is matched to the cube root of the PDF:

g′(x) = βp1/3(x). (3)

The scaling factor β absorbs the output variance factor σ 2(n); it serves only to define units
of measurement for y and can be set to 1 if those units are not defined independently4. Hence

g(x) =
∫ x

−∞
βp1/3(u) du. (4)

This result (4) parallels the solution to the vector quantization result from the engineering
literature (Panter and Dite 1951, Pratt 1978). Moreover, the exponent 1/3 occurs in the slicing
patterns of self-organized Kohonen networks (Ritter et al 1989).

But the general form of our problem, in which the noise variance at the output is dependent
on the mean output g(x), is not accounted for in this stream of literature. The more general
problem is easily dealt with, however: if σ(n) is regarded as a function of the mean output g(x),
let us say h(g(x)), then g′(x)is replaced in the left-hand side of equation (3) by g′(x)/h(g(x)),
4 Convergence of the integral above now requires that p(x) decrease more rapidly than 1/x3 for large |x|.
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Figure 2. Pleistochromes based on minimization of mean squared error (circles), or of mean
absolute error (crosses), compared with the function that maximizes mutual information through
histogram equalization (plain curve).

yielding a differential equation for g which may be solved by separation of variables. The
underlying idea is simple: some monotonic function of the output will have a standard deviation
independent of its mean (in the case of Poisson noise for example, this will be the square root
of the output). The optimal condition occurs when that function of the output conforms to
equation (4). With the input–output nonlinearity thus optimized, h has no effect at all (except
for an overall sensitivity factor) on the variation of equivalent input noise with input x: the
range of confusion around x varies as p1/3(x) in all cases.

We refer to the optimal response function of equation (4) (illustrated by the circles of
figure 1) as the pleistochrome, from the Greek pleistos meaning ‘most’. As figure 2 shows, the
pleistochrome is roughly similar to the cumulative distribution of x prescribed by histogram
equalization (Laughlin 1981, 1983). But it is wider than that function by a factor of about
the square root of three, allowing much better discrimination in the margins of colour space.
The infomax criterion that leads to histogram equalization is not derived from a noise-based
theoretical framework, and it lacks an acceptable rationale in terms of minimization of random
error or the associated cost. A straightforward generalization of the above analysis shows
that to minimize the nth power of error, the gradient should match the (n + 1)th root of
the environmental PDF p(x); histogram equalization is therefore the limit approached by
letting the exponent on error decline from 2 (minimization of mean squared error) toward zero
(minimization of errors without regard for their size).

With input noise present, equation (3) still guarantees least mean squared error, because
the input noise (if uncorrelated with the output noise) simply adds an optimization-irrelevant
constant to the mean squared error that must be minimized. A more awkward complication is
that if the input noise is non-uniform, the cost of added input error also becomes non-uniform.
Such situations can be dealt with by suitably weighting the errors for different values of x.
A procedure like the one advocated for non-uniform output noise suffices to do this: some
monotonic function f (x) of the input x will exist such that estimation errors of equal absolute
magnitude in f (x) are equally undesirable. For instance, f (x) would be a logarithmic function
of x, if Weber’s law described the error cost. Equation (3) specifies the optimum dependence
of output firing rate on this function f (x), and thence on x. Figure 1 illustrates this: the
histogram shown is for the logarithm of the b chromaticity coordinate, and the continuous
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curve is the response function that minimizes error in the estimate of log(b) rather than in the
absolute value of b.

Indeed, the greater the input noise, the more general the validity of equation (3) as a
prescription for optimal nonlinearity. If noise sources inherent in the input predominate over
errors originating at the output, as happens in the visual system at low light levels (Barlow
et al 1971, Baylor 1987, Donner 1992), a relatively small output-derived mean squared error
is simply added to the relatively large mean squared error inherent in the input itself to give
the total mean squared error in the perceptually estimated input. Then, any useful measure
of average error or of the associated cost—be it mean square, mean absolute error or any
other continuous function of mean squared error—will be approximately linear with the mean
square error contributed from sources of variation at the output. Denote the mean ‘error’ or
the associated mean cost that prevails for a particular stimulus value x—the quantity whose
integral over x is to be minimized—by MC(x), which we take to be some fixed continuous
function of the mean squared error MSE(x); we also suppose that that function always has a
linear term in its Taylor series expansion about MSE(x) and that the contribution of output
noise to MSE is always small enough to allow neglect of higher derivatives. Then MC(x) is
always approximately linear with MSE(x) within the range of influence of the output noise
(and is also linear with the output-noise-derived component of MSE(x)).

When input noise is uniform, both MSE(x) and the gradient of MC(x) with respect to
MSE(x) are independent of x, and to minimize the integral of MSE(x) over x is also to
minimize the integral of MC(x). When input noise is not uniform, the gradient of MC(x)

with respect to MSE(x) may depend on x. But this complication can again be dealt with by
replacing x with a suitable monotonic function of x. (That is, for suitable x ′, the error cost
MC(x ′) will have the same approximately linear dependence on MSE(x ′) for all x ′.)

In this situation, therefore, the optimum input–output nonlinearity is determined for any
cost function (quadratic or otherwise) by first transforming the input so that input-derived
error (or more precisely, the cost per unit of added error in the estimated input) is independent
of mean input, and then applying the MSE pleistochrome—the cube root construction of
equation (3)—to derive the best dependence of output on that input. Thus the least-squared-
error pleistochrome is uniquely robust to input noise.

5. Split range coding with two neurons: something for nothing

Our discussion has not yet yielded any rationale for opponent codes. In contrast, the
sigmoidal nature of the pleistochrome (circles, figure 1) is incompatible with a null response
to white. But when more than one neuron is available to represent a single stimulus
dimension, new opportunities for coding are introduced. The non-opponent pleistochrome
that optimizes encoding by a single neuron has an opponent counterpart when encoding
is done by a pair of neurons. Two rectifying neurons, one red-excitatory and the other
green-excitatory, and each with a purely compressive nonlinearity, can represent opposite
halves of the red–green stimulus continuum with positive firing rates, but with no response
to greenish or to reddish stimuli respectively. Such a representation is almost equivalent
to that produced by a single neuron with sigmoidal nonlinearity (Marr 1974). As figure 3
shows, the responses of two such neurons (upward and downward triangles) correspond to
the two halves of the single-neuron pleistochrome sigmoid (plain curve, figure 3), but with
the left half flipped up so that the response gradients for the neuron responding in the left
half of the stimulus range are simply reversed. This, however, uses only the upper half
of the output range of each neuron. The optimal implementation of such a ‘split range’
code using two rectifying neurons is instead to set the cross point, x0, at the 50% point
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Figure 3. From single-neuron pleistochrome (continuous curve, from figure 1, circles) to 2-neuron
split range opponent code (up and downward pointing triangles for two rectifying neurons). Crosses
show how using the full output range for each neuron to cover only half the full input range (‘split
range’ code) allows doubled response function gradients. Left and rightward pointing arrows show
how the optimum response function (crosses) is modified when Poisson noise and spontaneous
activity are assumed.

on the sigmoid, and then replace the integral from −∞ in equations (4) or (5) with twice
the integral upward or downward from x0. In this way the appropriate segment of the
input range can elicit the maximum possible response range from each neuron, and the
gradients of the response functions are doubled everywhere (left and rightward triangles,
figure 3).

By using two neurons in this way the visual system can therefore double the precision in
its representation of the input in the presence of output noise. If, alternatively, the two neurons
had each been endowed with the same sigmoidal nonlinearity that is optimal for single neurons,
then averaging of their signals (on the generous assumption of independent noise) would have
reduced average error by only the square root of two. Thus the net benefit of adopting the
‘split range’ code (as opposed to the alternative of similar neurons operating in parallel with
optimal nonlinearity) is a square root of two reduction of average error.

The split range code may be viewed as a step from a purely analogue representation (the
sigmoidal single-neuron pleistochrome) to a hybrid, analogue–digital one. In a still more
efficient encoding of a stimulus dimension, a set of N neurons, each with m reliably distinct
outputs, can represent mN different stimulus levels by allocating successive sets of digits to
the different neurons. But unlike the split range code this more fully digital representation
requires individual neural outputs to depend discontinuously (and non-monotonically) on the
input value. This greatly complicates the problem of readout (besides creating a risk of large
errors). A split range code with N > 2, where the input range is divided into many consecutive
segments each spanned by the graded firing range of one neuron, would avoid these problems
and would still allow a simple centre-of-gravity or weighted sum of neural firing rates to
represent the stimulus value. But this would have the drawback that some neurons must
have high firing rates for frequent (e.g. near-white) stimuli. By reserving high firing rates for
unusual stimuli the two-neuron split-range code can facilitate selective response to unusual
inputs (Barlow 1972, Field 1987), and can reduce average firing rate and neurotransmitter
release so as to lower the metabolic cost of perception.
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6. Comparison of the pleistochrome with psychophysical and electrophysiological data

Our proposal that visual nonlinearity is optimized for discrimination among natural colours
in the presence of output noise leads to a simple prediction: the average error in visual
discrimination or matching should be inversely proportional to g′(x) in equation (4), and
hence to the cube root of the natural probability density function p(x). As noted above, this
prediction holds even for non-uniform output noise, provided that the nonlinearity g(x) is
appropriately optimized in each case.

Psychophysical data for evaluating this prediction are available. For achromatic intensity
differences between comparison and standard stimulus patches, set in a common grey
background, comparison error is doubled for standards that create a contrast of about 20%
with the background; for isoluminant yellow–blue differences the cone contrast (for S cones
in this case) at which error is doubled is again about 20%. But in the case of red–green
isoluminant stimuli a standard L cone contrast of only 2% is enough to double the mean
comparison error (Leonova and MacLeod, in preparation).

If the visual system adopts the encoding principle of the pleistochrome, we would therefore
expect to find the probability density function p(r) for natural colours dropping to 1/8 of its
peak value at r values that give a contrast of 2% with white, with half-heights at around 20%
contrast for the other axes. This prediction is in one respect roughly upheld: in the distribution
of environmental colours the ranges for luminance and for b are indeed wider than for r , by an
order of magnitude or so (section 2). This could suggest that the operating ranges of the various
relevant neurons are fairly well matched to the very diverse distributions of environmental
inputs that they have to represent. In fact, however, the environmental distributions of b and
(especially) of luminous reflectance are somewhat broader than would be expected for strict
consistency with the pleistochrome principle. Why should the operating range of the visual
system be narrower than ‘optimal’ in this way?

One answer appeals to visual adaptation. Since retinally stabilized images fade,
vision is evidently sustained by the temporal transients that are generated when small eye
movements scan spatial gradients in the image (Ditchburn 1973). It is therefore relevant
to consider the distribution of the spatial differences in cone excitation in natural images.
In the images of Ruderman et al, the differences in luminance, in b, and in r between
adjacent 3 min arc pixels, have standard deviations of only 30, 13 and 0.6% respectively,
and the PDFs drop to 1/8 (where optimal differential sensitivity is halved) at about twice
these values; these distributions are naturally somewhat tighter than those for the absolute
values, owing to correlated variation in the values across the scene. The visual system can
therefore advantageously employ an adaptively roving null point for the colour-opponent
code (Krauskopf and Gegenfurtner 1992, Thornton and Pugh 1983), if its objective is the
precise representation of local contrast (from which a metric representation of local brightness
and colour can then be resurrected, perhaps in the way discussed by Land (1964) and Marr
(1974)).

With a roving null point, the range of input values spanned by the neural response functions
need only be wide enough to capture the relatively small deviations in the stimulus values from
their time and space varying adapting levels—and the precision with which those values can be
represented then becomes correspondingly greater. Local-contrast pleistochromes—contrast-
response functions that lead to least error in the representation of pixelwise spatial differences
in the images of Ruderman et al—are narrow enough to be fairly consistent with the cited
psychophysical results in the case of the chromatic variables. For luminance, however, the
contrast operating range implicit in the discrimination results remains narrower (by a factor of
about three) than the theoretically optimal one.
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A second limitation in our initial framework, also connected with the role of adaptation,
may underlie this remaining discrepancy for luminance. We have taken for granted that the
purpose of colour and lightness vision is to represent colours and lightnesses with the least pos-
sible error and allow these attributes of a surface to be estimated as precisely as possible. But
of course, differences in lightness and colour are also indispensable for the detection of spatial
features (Boynton 1980, Morgan et al 1992). For spatial vision it is desirable that local contrasts
should be detected with the greatest possible sensitivity wherever they are present in the image.
For this purpose, an all-or-none or categorical encoding scheme, with a step function nonlinear-
ity at a small threshold offset from the adapting background stimulus is ideal (since the large,
all-or-none spatial contrast signal resists obliteration by fluctuations in the output), and the
graded response of the pleistochrome is not needed. Visual nonlinearity more step-like than the
pleistochrome could therefore reflect a compromise in design between the conflicting require-
ments of surface identification and characterization on the one hand, and of detection of spatial
features on the other. This is supported by the electrophysiological data to which we turn next.

The nonlinearity implied by the reviewed psychophysical data is quite severe. The gradient
of the red–green response function, assumed in equation (4) to be directly proportional to
differential sensitivity, is halved at a cone contrast of 2%. No physiological data suggest so
severely compressed a response function for responses to chromatic stimuli: half-saturation L

cone chromatic contrasts of around 10% appear to be more typical, for the red–green sensitive
P cells of the parvocellular stream (Lee and others 1990). Thus, although the psychophysically
estimated visual operating range along the red–green axis is efficiently matched to the range
of environmental inputs, the physiological one apparently is not. Elsewhere (MacLeod and
von der Twer, in preparation) we consider reasons for this, including the possibility that output
noise increases with mean firing rate (as in a Poisson process), which makes the optimum
physiological nonlinearity a more gentle one.

Along the achromatic axis of colour space, both the psychophysical operating range in
cone contrast and the dispersion of the environmental inputs are (as noted above) at least tenfold
greater than along the red/green one. The M cells of the magnocellular pathway (Livingstone
and Hubel 1987) are a plausible substrate for achromatic discrimination. These cells, however
saturate at very low achromatic cone contrasts, with half-saturation values of around 5%
(Kaplan and Shapley 1986, Lee and others 1990, Wachtler et al 1996). The M cells thus
deviate by an order of magnitude from the optimal behaviour embodied in the pleistochrome,
and could not support the observed keen discrimination between test patches with relatively
high achromatic contrast relative to their surrounds.

It is therefore likely that the M cells are not responsible for representing the achromatic
attributes of surfaces in a continuous fashion, but serve instead as all-or-none detectors of
spatial contrast and of change over time. Thus, although responses of P cells to red/green
contrast are almost as nonlinear as those of M cells for achromatic contrast, comparison
with natural scene statistics actually suggests different functions for these two systems. The
red/green nonlinearity of the P cells is appropriate for a metric representation of their natural
inputs, but the nonlinearity of the M cells is not. This is consistent with the common view
that the luminance system (sometimes tentatively, though questionably, identified with the
magnocellular pathway) is more concerned with form and with detection of spatial structure
than are the chromatic ones (e.g. Boynton et al (1977), Gregory and Heard (1979), Livingstone
and Hubel (1987)). The metric representation of the achromatic axis as well as the chromatic
axes could be the job of the P cell system (Allman and Zucker 1990). In support of this
idea, physiological investigations such as the ones cited have shown that the P cells have an
almost linear response to achromatic contrast, roughly consistent with the pleistochrome for
achromatic inputs.
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