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Abstract

We present a systematic comparison of machine learning
methods applied to the problem of fully automatic recogni-
tion of facial expressions. We report results on a series of
experiments comparing recognition engines, including Ad-
aBoost, support vector machines, linear discriminant anal-
ysis. We also explored feature selection techniques, includ-
ing the use of AdaBoost for feature selection prior to clas-
sification by SVM or LDA. Best results were obtained by
selecting a subset of Gabor filters using AdaBoost followed
by classification with Support Vector Machines. The system
operates in real-time, and obtained 93% correct general-
ization to novel subjects for a 7-way forced choice on the
Cohn-Kanade expression dataset. The outputs of the clas-
sifiers change smoothly as a function of time and thus can
be used to measure facial expression dynamics. We applied
the system to to fully automated recognition of facial ac-
tions (FACS). The present system classifies 17 action units,
whether they occur singly or in combination with other ac-
tions, with a mean accuracy of 94.8%. We present prelimi-
nary results for applying this system to spontaneous facial
expressions.

1 Introduction

We present results on a user independent fully automatic
system for real time recognition of basic emotional expres-
sions from video. The system automatically detects frontal
faces in the video stream and codes each frame with respect
to 7 dimensions: Neutral, anger, disgust, fear, joy, sadness,
surprise. A second version of the system detects 17 action
units of the Facial Action Coding System (FACS). We con-
ducted empirical investigations of machine learning meth-
ods applied to this problem, including comparison of recog-
nition engines and feature selection techniques. Best results
were obtained by selecting a subset of Gabor filters using
AdaBoost and then training Support Vector Machines on

the outputs of the filters selected by AdaBoost. The com-
bination of AdaBoost and SVM’s enhanced both speed and
accuracy of the system. The system presented here is fully
automatic and operates in real-time. \We present prelimi-
nary results for recognizing spontaneous expressions in an
interview setting.

2 Facial Expression Data

The facial expression system was trained and tested on
Cohn and Kanade’s DFAT-504 dataset [7]. This dataset con-
sists of 100 university students ranging in age from 18 to
30 years. 65% were female, 15% were African-American,
and 3% were Asian or Latino. Videos were recoded in ana-
log S-video using a camera located directly in front of the
subject. Subjects were instructed by an experimenter to per-
form a series of 23 facial expressions. Subjects began each
display with a neutral face. Before performing each display,
an experimenter described and modeled the desired display.
Image sequences from neutral to target display were digi-
tized into 640 by 480 pixel arrays with 8-bit precision for
grayscale values. For our study, we selected the 313 se-
quences from the dataset that were labeled as one of the 6
basic emotions. The sequences came from 90 subjects, with
1 to 6 emotions per subject. The first and last frames (neu-
tral and peak) were used as training images and for testing
generalization to new subjects, for a total of 626 examples.
The trained classifiers were later applied to the entire se-
quence.

2.1 Real-time Face Detection

We developed a real-time face detection system that em-
ploys boosting techniques in a generative framework [5]
and extends work by [17]. Enhancements to [17] include
employing Gentleboost instead of Adaboost, smart feature
search, and a novel cascade training procedure, combined
in a generative framework. Source code for the face detec-
tor is freely available at http://kolmogorov.sourceforge.net.



Accuracy on the CMU-MIT dataset, a standard public data
set for benchmarking frontal face detection systems, is 90%
detections and 1/million false alarms, which is state-of-the-
art accuracy. The CMU test set has unconstrained lighting
and background. With controlled lighting and background,
such as the facial expression data employed here, detection
accuracy is much higher. The system presently operates at
24 frames/second on a 3 GHz Pentium 1V for 320x240 im-
ages.

All faces in the DFAT-504 dataset were successfully de-
tected. The automatically located faces were rescaled to
48x48 pixels. The typical distance between the centers of
the eyes was roughly 24 pixels. No further registration was
performed. The images were converted into a Gabor mag-
nitude representation, using a bank of Gabor filters at 8 ori-
entations and 9 spatial frequencies (2:32 pixels per cycle at
1/2 octave steps) (See [9] and [10]).

3 Classification of Full Expressions
3.1 Support Vector Machines

We first examined facial expression classification based
on support vector machines (SVM’s). SVM'’s are well
suited to this task because the high dimensionality of the
Gabor representation O(10°) does not affect training time,
which depends only on the number of training examples
0(10%). The system performed a 7-way forced choice be-
tween the following emotion categories: Happiness, sad-
ness, surprise, disgust, fear, anger, neutral. Methods for
multiclass decisions with SVM’s were investigated in [10].

Here, the seven-way forced choice was performed in two
stages. In stage I, support vector machines performed bi-
nary decision tasks using one-versus-all partitioning of the
data, where each SVM discriminated one emotion from ev-
erything else. Stage Il converted the representation pro-
duced by the first stage into a probability distribution over
the seven expression categories. This was achieved by pass-
ing the 7 SVM outputs through a softmax competition.

Generalization to novel subjects was tested using leave-
one-subject-out cross-validation, in which all images of the
test subject were excluded from training. Linear, polyno-
mial, and radial basis function (RBF) kernels with Lapla-
cian, and Gaussian basis functions were explored. Lin-
ear and RBF kernels employing a unit-width Gaussian per-
formed best, and are presented here. Results are given in
Table 1.

3.2 Adaboost

SVM performance was next compared to Adaboost for
emotion classification. The features employed for the Ad-
aboost emotion classifier were the individual Gabor filters.
This gave 9x8x48x48= 165,888 possible features. A subset
of these features was chosen using Adaboost. On each train-
ing round, the Gabor feature with the best expression clas-
sification performance for the current boosting distribution

was chosen. The performance measure was a weighted sum
of errors on a binary classification task, where the weighting
distribution (boosting) was updated at every step to reflect
how well each training vector was classified.

Adaboost training continued until the classifier output
distributions for the positive and negative samples were
completely separated by a gap proportional to the widths
of the two distributions. The union of all features selected
for each of the 7 emotion classifiers resulted in a total of
900 features.

Classification results are given in Table 1. The general-
ization performance with Adaboost was comparable to lin-
ear SVM performance. Adaboost had a substantial speed
advantage. There was a 180-fold reduction in the number
of Gabor filters used. Because the system employed a sub-
set of filter outputs at specific image locations the convo-
lutions were calculated in pixel space rather than Fourier
space which reduced the speed advantage, but it neverthe-
less resulted in a speed benefit of over 3 times faster than
the linear SVM.

3.3 Linear Discriminant Analysis

A previous successful approach to basic emotion recog-
nition used Linear Discriminant Analysis (LDA) to classify
Gabor representations of images [11]. While LDA may be
optimal when the class distributions are Gaussian, SVM’s
may be more effective when the class distributions are not
Gaussian. Table 1 compares LDA with SVM’s and Ad-
aboost. A small ridge term was used in LDA.

The performance results for LDA were dramatically
lower than SVMs. Performance with LDA improved by ad-
justing the decision threshold for each emotion so as to bal-
ance the number of false detects and false negatives. This
form of threshold adjustment is commonly employed with
LDA classifiers, but it uses post-hoc information, whereas
the SVM performance was without post-hoc information.
Even with the threshold adjustment, the linear SVM per-
formed significantly better than LDA. (See Tables 1 and 2.)

3.4 Feature selection using PCA

Many approaches to LDA also employ PCA to perform
feature selection prior to classification. For each classi-
fier we searched for the number of PCA components which
gave maximum LDA performance, which was typically 40
to 70 components. The PCA step resulted in a substantial
improvement. The combination of PCA and threshold ad-
justment gave performance accuracy of 80.7% for the 7-
alternative forced choice, which was comparable to other
LDA results in the literature [11]. Nevertheless, the lin-
ear SVM outperformed LDA even with the combination of
PCA and threshold adjustment. SVM performance on the
PCA representation was significantly reduced, indicating an
incompatibility between PCA and SVM’s for the problem.



3.5 Feature selection by Adaboost

Adaboost is not only a fast classifier, it is also a feature
selection technique. An advantage of feature selection by
Adaboost is that features are selected contingent on the fea-
tures that have already been selected. In feature selection by
Adaboost, each Gabor filter is a treated as a weak classifier.
Adaboost picks the best of those classifiers, and then boosts
the weights on the examples to weight the errors more. The
next filter is selected as the one that gives the best perfor-
mance on the errors of the previous filter. At each step, the
chosen filter can be shown to be uncorrelated with the out-
put of the previous filters [6, 15].

We explored training SVM and LDA classifiers on the
features selected by Adaboost. Here, the classifiers were
trained on the continuous outputs of the selected Gabor
features, in contrast to the Adaboost classifier which em-
ployed thresholded outputs. Adaboost was used to select
900 features from 9x8x48x48=165888 possible Gabor fea-
tures, which were then classified by the SVM or LDA.

The results are shown in Table 1 and 2. Best performance
was obtained with the combination of Adaboost and SVM’s.
We informally call these combined classifiers AdaSVM. We
informally call these combined classifiers AdaSVM. The re-
sults are shown in Table 1. AdaSVM’s outperformed both
Adaboost (z = 2.1,p = 0.2) and SVM’s (z = 2.6,p <
.01), where z is the Z-statistic for comparing success rates
of Bernoulli random variables, and p is probability that the
two performances come from the same distribution. The re-
sult of 93.3% accuracy for a user-independent 7-alternative
forced choice was encouraging given that previously pub-
lished results on this database were 81-83% accuracy (e.g.
[2]). AdaSVM’s also carried a substantial speed advantage
over SVM’s. The nonlinear AdaSVM was over 400 times
faster than the nonlinear SVM.

Regarding LDA, feature selection with Adaboost gave
better performance than feature selection by PCA and re-
duced the difference in performance between LDA and
SVM’s. Nevertheless, SVM’s continued to outperform
LDA.

Table 1. Leave-one-out generalization performance of Ad-
aboost,SVM’s and AdaSVM’s. AdaSVM: Feature selection by
AdaBoost followed by classification with SVM’s. LDA,.q: Lin-
ear Discriminant analysis with feature selection based on principle
component analysis, as commonly implemented in the literature.

Kernel | Adaboost SVM AdaSVM LDA,.,

Linear 90.1 88.0 93.3 80.7
RBF 89.1 93.3

Table 2. Comparing SVM performance to LDA with different fea-
ture selection techniques. The two classifiers are compared with
no feature selection, with feature selection by PCA, and feature
selection by Adaboost.

LDA SVM (linear)
Feature selection

None 44.4 88.0
PCA 80.7 75.5
Adaboost 88.2 93.3

4 Application to Spontaneous Behavior

In order to objectively capture the richness and complex-
ity of facial expressions, behavioral scientists have found it
necessary to develop objective coding standards. The facial
action coding system (FACS) [4] is the most objective and
comprehensive coding system in the behavioral sciences.
A human coder decomposes facial expressions in terms of
46 component movements, which roughly correspond to
the 44 facial muscles. Several research groups have rec-
ognized the importance of automatically recognizing FACS
[3, 16, 14, 8]. Here we apply the system described above to
the problem of fully automated facial action coding.

4.1 Spontaneous Expression Database

Our collaborators at Rutgers University have collected
a dataset of spontaneous facial behavior consisting of 100
subjects participating in a *false opinion’ paradigm. In this
paradigm, subjects first fill out a questionnaire regarding
their opinions about a social or political issue. Subjects are
then asked to either tell the truth or take the opposite opinion
on an issue where they rated strong feelings, and convince
an interviewer they are telling the truth. This paradigm has
been shown to elicit a wide range of emotional expressions
as well as speech-related facial expressions. This dataset
is particularly challenging both because of speech-related
mouth movements, and also because of out-of-plane head
rotations which tend to be present during discourse.

Two minutes of each subject’s behavior is being FACS
coded by two certified FACS coders. FACS codes include
the apex frame as well as the onset and offset frame for
each action unit (AU). Here we present preliminary results
for a system trained on two large datasets of FACS-coded
posed expressions, and tested on the spontaneous expres-
sion database.

4.2 FACS Training
The system was trained on FACS-coded images from 2

datasets. The first dataset was the Cohn Kanade dataset,
which contains FACS scores by two certified FACS coders



in addition to the basic emotion labels. The second dataset
consisted of directed facial actions collected by Hager and
Ekman. (See [3].) The combined dataset contained 2568
training examples from 119 subjects. As above, the sys-
tem was fully automated. Automatic eye detection [5] was
employed to align the eyes in each image. Images were
scaled to 192x192, passed through a bank of Gabor filters
at 8 orientations and 7 spatial frequencies (4:32 pixels per
cyc). Output magnitudes were then passed to nonlinear sup-
port vector machines using RBF kernels. No feature selec-
tion was performed, although we plan to evaluate feature
selection by AdaBoost in the near future.

Separate support vector machines, one for each AU,
were trained to perform context-independent recognition.
In context-independent recognition, the system detects the
presence of a given AU regardless of the co-occurring AU’s.
Positive examples consisted of the last frame of each se-
quence which contained the expression apex. Negative ex-
amples consisted of all apex frames that did not contain the
target AU plus neutral images obtained from the first frame
of each sequence, for a total of 2568-N negative examples
for each AU.

4.3 Generalization Performance Within Dataset

We first report performance for generalization to
novel subjects within the Cohn-Kanade and Ekman-Hager
databases. Generalization to new subjects was tested us-
ing leave-one-subject-out cross-validation. The results are
shown in Table 3. All system outputs above threshold were
treated as detections. Performance was evaluated for thresh-
olds of 0 in the SVM, and then evaluated again for the opti-
mal threshold that maximized percent correct.

The system obtained a mean of 94.8% agreement with
human FACS labels. System outputs for full image se-
quences of test subjects are shown in Figure 1. Although
each individual image is separately processed and classi-
fied, the outputs change smoothly as a function of expres-
sion magnitude in the successive frames of each sequence,
enabling applications for measuring the magnitude and dy-
namics of facial expressions.
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Figure 1. Automated FACS measurements for full image se-
quences. Shown are 4 subjects from the Cohn-Kanade dataset pos-
ing disgust containing AU’s 4,7 and 9. These are test sequences
not used for training.

Over 7000 action unit combinations have been reported

Table 3. Performance for fully automatic recognition of 17 facial
actions, generalization to novel subjects in the Cohn-Kanade and
Ekman-Hager databases. N: Total number of positive examples. P:
Percent agreement with Human FACS codes (positive and negative
examples classed correctly). Pop,:: Same with optimal threshold.
FA, Hit: Hit and false alarm rates with optimal threshold.

AU Name N P Popt FA  Hit

1 Inn.browraise 409 90.3 929 04 713
2 Out.browraise 315 91.8 928 16 626
4 Brow lower 412 827 868 6.9 410
5 Upperlidraise 286 91.2 929 21 619
6  Cheek raise 278 928 935 14 701
7  Lowerlidtight 403 857 885 4.6 521
9  Nose wrinkle 68 98.7 988 0.04 853
10 Lip Raise 50 97.7 981 139 26.0
12 Lipecrnr. pull 196 978 98.0 0.04 934
15 Lipcrnr.depr. 100 97.0 972 1.0 720

17  Chin raise 203 87.0 928 7.0 404
20  Lipstretch 99 944 962 6.6 414
23  Liptighten 57 970 979 110 36.8
24 Lip press 49 984 985 17 612
25  Lips part 376 89.7 912 22 649
26 Jaw drop 86 96.7 971 59 453

27  Mouth stretch 81 99.2 99.2 0.64 97.5

Mean 934 948 39 602

in the psychology literature, and the problem of how to han-
dle recognition of action unit combinations has received
considerable discussion (e.g. [16, 13]). Here we address
recognition of combinations by training a data-driven sys-
tem to detect a given action regardless of whether it appears
singly or in combination with other actions (context inde-
pendent recognition). A strength of data-driven systems is
that they learn the variations due to combinations, and they
also learn the most likely contexts of an action. Nonlin-
ear support vector machines have the added advantage of
being able to handle multimodal data distributions which
can arise with action combinations.® It is an open question
whether building classifiers for specific combinations im-
proves recognition performance, and that is a topic of future
work.

4.4 Generalization to Spontaneous Expressions

The system described in Section 4.2 was then tested on
the spontaneous expression database. Preliminary results

1when the class of kernel iswell matched to the problem. The distribu-
tion of facial expression datais not well known, and this question requires
empirical study. Several labsin addition to ours have found arange of RBF
kernels to be effective for face classifi cation tasks.



are presented for 12 subjects. This data contained a total of
1689 labeled events, consisting of 33 distinct action units,
16 of which were AU’s for which we had trained classifiers.
The face detector operates for frontal faces of +10deg,
whereas unconstrained head movements during discourse
can rotate outside that range. Face detections were accepted
if the face box was greater than 150 pixels width, both eyes
were detected with positive position, and the distance be-
tween the eyes was > 40 pixels. This resulted in faces found
for 95% of the video frames. All detected faces were passed
to the AU recognition system.
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Figure 2. Sample system outputs for a 10-second segment con-
taining a brow-raise (FACS code 1+2). System output is shown
for AU 1 (left) and AU 2 (right). Human codes are overlayed for
comparison (onset, apex, offset).

Here we present benchmark performance of the basic
frame-by-frame system on the video data. Figure 2 shows
sample system outputs for one subject, and performance is
shown in Table 4. Performance was assessed several ways.
First, we assessed overall percent correct for each action
unit on a frame-by-frame basis, where system outputs that
were above threshold inside the onset and offset interval
indicated by the human FACS codes, and below threshold
outside that interval were considered correct. This gave an
overall accuracy of 90.5% correct across AU’s.?

Next an interval analysis was performed which measured
percent correct detections on intervals of length I. Here we
present performance for intervals of length 21 (10 on either
side of the apex), but performance was stable for a range of
choices of I. A target AU was treated as present if at least
6/21 frames were above threshold. An SVM threshold of

2Qverall percent correct can give high numbers since the AU'’s are
present for asmall percentage of frames.

Table 4. Recognition of spontaneous facial actions. AU: Action
unit number. N: Total number of testing examples. Dur.: Mean
duration of the AU in frames. P: percent correct over all frames;
Hitgpe,: Hit rate for AU apex frame. Pa: Percent correct for
interval analysis (see text). FA, Hit: Hit and false alarm rates for
interval analysis.

AU N  Dur. P Pa FA  Hit

1 166 30 84 81 17 48
2 138 23 88 79 20 55
4 33 23 93 78 22 55
5 34 26 98 80 20 33
6 56 112 91 86 13 79
7 48 78 83 76 22 33
9 2 12 100 79 21 100
10 53 69 95 76 23 29
12 112 102 86 84 11 58
15 73 18 98 80 19 40
17 88 39 93 78 20 48
20 8 8 99 80 20 18
23 29 46 94 79 21 36
24 66 27 92 77 22 17
25 131 65 65 74 21 34
26 105 55 92 73 23 27

Mean 905 788 19.7 444

1 standard deviation above the mean was employed. Neg-
ative examples consisted of the remaining 2 minute video
stream for each subject, outside the FACS coded onset and
offset intervals for the target AU, parsed into intervals of
21 frames. Mean percent correct for the interval analysis
was 79%, with hit and false alarm rates of 44% and 20%
respectively.

5 Conclusions

We presented a systematic comparison of machine learn-
ing methods applied to the problem of fully automatic
recognition of facial expressions, including AdaBoost, sup-
port vector machines, and linear discriminant analysis, as
well as feature selection methods. Best results were ob-
tained by selecting a subset of Gabor filters using AdaBoost
and then training Support Vector Machines on the outputs
of the filters selected by AdaBoost. The combination of
Adaboost and SVM’s enhanced both speed and accuracy of
the system. The full system operates in real time. Face de-
tection runs at 24 frames/second in 320x240 images on a 3
GHz Pentium IV. The expression recognition step operates
in less than 10 msec.

The generalization performance to new subjects for
recognition of full facial expressions of emotion in a 7-way
forced choice was 93.3%, which is the best performance



reported so far on this publicly available dataset. Our re-
sults suggest that user independent, fully automatic real
time coding of facial expressions in the continuous video
stream is an achievable goal with present computer power,
at least for applications in which frontal views can be as-
sumed.

The machine-learning based system presented here can
be applied to recognition of any facial expression dimen-
sion given a training dataset. Here we applied the sys-
tem to fully automated facial action coding, and obtained
a mean agreement rate of 94.8% for 17 AU’s from the Fa-
cial Action Coding System. The outputs of the expression
classifiers change smoothly as a function of time, provid-
ing information about expression dynamics that was previ-
ously intractable by hand coding. The system is fully auto-
mated, and performance rates are similar to or better than
other systems tested on this dataset that employed varying
levels of manual registration. The approach to automatic
FACS coding presented here, in addition to being fully au-
tomated, also differs from approaches such as [13] and [16]
in that instead of designing special purpose image features
for each facial action, we explore general purpose learning
mechanisms for data-driven facial expression classification.
The approach detects not only changes in position of fea-
ture points, but also changes in image texture such as those
created by wrinkles, bulges, and changes in feature shapes.

Here we presented preliminary results for the perfor-
mance of the system on spontaneous expressions. The sys-
tem was able to detect facial actions in this database de-
spite the presence of speech, out-of-plane head movements
that occur during discourse, and the fact that many of the
action units occurred in combination. These results pro-
vide a benchmark for frame-by-frame analysis by a system
trained for frontal views. The output sequence contains in-
formation about dynamics that can be exploited for decid-
ing the presence of a facial action [1]. Future work will
explore these dynamics, and compare improvement to the
benchmark provided here. The accuracy of automated fa-
cial expression measurement may also be considerably im-
proved by 3D alignment of faces. Moreover, information
about head movement dynamics is an important component
of nonverbal behavior, and is measured in FACS. Members
of this group have developed techniques for automatically
estimating 3D head pose in a generative model [12] and for
aligning face images in 3D. These techniques will be inte-
grated into future versions of our system.
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