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Abstract— Spontaneous facial expressions differ from posed
expressions in both which muscles are moved, and in the dy-
namics of the movement. Advances in the field of automatic
facial expression measurement will require development
and assessment on spontaneous behavior. Here we present
preliminary results on a task of facial action detection in
spontaneous facial expressions. We employ a user indepen-
dent fully automatic system for real time recognition of
facial actions from the Facial Action Coding System (FACS).
The system automatically detects frontal faces in the video
stream and coded each frame with respect to 20 Action
units. The approach applies machine learning methods such
as support vector machines and AdaBoost, to texture-based
image representations. The output margin for the learned
classifiers predicts action unit intensity. Frame-by-frame
intensity measurements will enable investigations into facial
expression dynamics which were previously intractable by
human coding.

I. I NTRODUCTION

A. The facial action coding system

In order to objectively capture the richness and com-
plexity of facial expressions, behavioral scientists have
found it necessary to develop objective coding standards.
The facial action coding system (FACS) [17] is the most
widely used expression coding system in the behavioral
sciences. A human coder decomposes facial expressions
in terms of 46 component movements, which roughly
correspond to the individual facial muscles. An example
is shown in Figure 1.

FACS provides an objective and comprehensive lan-
guage for describing facial expressions and relating them
back to what is known about their meaning from the
behavioral science literature. Because it is comprehensive,
FACS also allows for the discovery of new patterns related
to emotional or situational states. For example, what are
the facial behaviors associated with driver fatigue? What
are the facial behaviors associated with states that are
critical for automated tutoring systems, such as interest,
boredom, confusion, or comprehension? Without an ob-
jective facial measurement system, we have a chicken-

and-egg problem. How do we build systems to detect
comprehension, for example, when we don’t know for
certain what faces do when students are comprehending?
Having subjects pose states such as comprehension and
confusion is of limited use since there is a great deal of
evidence that people do different things with their faces
when posing versus during a spontaneous experience (e.g.
[8], [14]). Likewise, subjective labeling of expressions
has also been shown to be less reliable than objective
coding for finding relationships between facial expression
and other state variables. Some examples of this are
discussed below, namely the failure of subjective labels
to show associations between smiling and other measures
of happiness, as well as failure of naive subjects to differ-
entiate deception and intoxication from facial expression,
whereas reliable differences were shown with FACS.

Objective coding with FACS is one approach to the
problem of developing detectors for state variables such
as comprehension and confusion, although not the only
one. Machine learning of classifiers from a database
of spontaneous examples of subjects in these states is
another viable approach, although this carries with it
issues of eliciting the state, and assessment of whether
and to what degree the subject is experiencing the desired
state. Experiments using FACS face the same challenge,
although computer scientists can take advantage of a large
body of literature in which this has already been done by
behavioral scientists. Once a database exists, however, in
which a state has been elicited, machine learning can be
applied either directly to image primitives, or to facial
action codes. It is an open question whether intermediate
representations such as FACS are the best approach to
recognition, and such questions can begin to be addressed
with databases such as the one described in this paper.
Regardless of which approach is more effective, FACS
provides a general purpose representation that can be
useful for many applications. It would be time consuming
to collect a new database and train application-specific de-
tectors directly from image primitives for each new appli-
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cation. The speech recognition community has converged
on a strategy that combines intermediate representations
from phoneme detectors plus context-dependent features
trained directly from the signal primitives, and perhaps
a similar strategy will be effective for automatic facial
expression recognition.

There are numerous examples in the behavioral science
literature where FACS enabled discovery of new relation-
ships between facial movement and internal state. For
example, early studies of smiling focused on subjective
judgments of happiness, or on just the mouth movement
(zygomatic major). These studies were unable to show a
reliable relationship between expression and other mea-
sures of enjoyment, and it was not until experiments with
FACS measured facial expressions more comprehensively,
that a strong relationship was found: Namely that smiles
which featured both orbicularis oculi (AU6), as well as zy-
gomatic major action (AU12), were correlated with self-
reports of enjoyment, as well as different patterns of brain
activity, whereas smiles that featured only zygomatic
major (AU12) were not (e.g. [16]). Research based upon
FACS has also shown that facial actions can show differ-
ences between genuine and faked pain [8], and between
those telling the truth and lying at a much higher accuracy
level than naive subjects making subjective judgments of
the same faces [26]. Facial Actions can predict the onset
and remission of depression, schizophrenia, and other
psychopathology [20], can discriminate suicidally from
non-suicidally depressed patients [27], and can predict
transient myocardial ischemia in coronary patients [42].
FACS has also been able to identify patterns of facial
activity involved in alcohol intoxication that observers not
trained in FACS failed to note [44].

Figure 1. Example FACS codes for a prototypical expression of fear.
Spontaneous expressions may contain only a subset of these Action
Units.

Although FACS has a proven record for the scien-
tific analysis of facial behavior, the process of applying
FACS to videotaped behavior is currently done by hand
and has been identified as one of the main obstacles
to doing research on emotion [15], [25]. FACS coding
is currently performed by trained experts who make
perceptual judgments of video sequences, often frame
by frame. It requires approximately 100 hours to train
a person to make these judgments reliably and pass a
standardized test for reliability. It then typically takes
over two hours to code comprehensively one minute of
video. Furthermore, although humans can be trained to

code reliably the morphology of facial expressions (which
muscles are active) it is very difficult for them to code the
dynamics of the expression (the activation and movement
patterns of the muscles as a function of time). There is
good evidence suggesting that such expression dynamics,
not just morphology, may provide important information
[18]. For example, spontaneous expressions have a fast
and smooth onset, with distinct facial actions peaking
simultaneously, whereas posed expressions tend to have
slow and jerky onsets, and the actions typically do not
peak simultaneously [24].

Significant advances in computer vision open up the
possibility of automatic coding of facial expressions at
the level of detail required for such behavioral studies.
Automated systems would have a tremendous impact on
basic research by making facial expression measurement
more accessible as a behavioral measure, and by providing
data on the dynamics of facial behavior at a resolution
that was previously unavailable. Such systems would also
lay the foundations for computers that can understand
this critical aspect of human communication. Computer
systems with this capability have a wide range of ap-
plications in basic and applied research areas, including
man-machine communication, security, law enforcement,
psychiatry, education, and telecommunications [39].

B. Spontaneous Facial Expression

The importance of spontaneous behavior for developing
and testing computer vision systems becomes apparent
when we examine the neurological substrate for facial ex-
pression. There are two distinct neural pathways that me-
diate facial expressions, each one originating in a different
area of the brain. Volitional facial movements originate
in the cortical motor strip, whereas the more involuntary,
emotional facial actions, originate in the subcortical areas
of the brain (e.g. [33]. Research documenting these dif-
ferences was sufficiently reliable to become the primary
diagnostic criteria for certain brain lesions prior to modern
imaging methods (e.g. [6].) The facial expressions medi-
ated by these two pathways have differences both in which
facial muscles are moved and in their dynamics. The two
neural pathways innervate different facial muscles [41],
and there are related differences in which muscles are
moved when subjects are asked to pose an expression such
as fear versus when it is displayed spontaneously [14].
Subcortically initiated facial expressions (the involuntary
group) are characterized by synchronized, smooth, sym-
metrical, consistent, and reflex-like facial muscle move-
ments whereas cortically initiated facial expressions are
subject to volitional real-time control and tend to be less
smooth, with more variable dynamics (see review by Rinn
[40].) However, precise characterization of spontaneous
expression dynamics has been slowed down by the need
to use non-invasive technologies (e.g. video), and the
difficulty of manually coding expression intensity frame-
by-frame. Thus the importance of video based automatic
coding systems.
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These two pathways appear to correspond to the
distinction between biologically driven versus socially
learned facial behavior. Researchers agree, for the most
part, that most types of facial expressions are learned
like language, displayed under conscious control, and
have culturally specific meanings that rely on context for
proper interpretation (e.g. [13]). Thus, the same lowered
eyebrow expression that would convey ”uncertainty” in
North America might convey ”no” in Borneo [9]. On the
other hand, there are a limited number of distinct facial
expressions of emotion that appear to be biologically
wired, produced involuntarily, and whose meanings are
similar across all cultures; for example, anger, contempt,
disgust, fear, happiness, sadness, and surprise [13]. A
number of studies have documented the relationship be-
tween these facial expressions of emotion and the phys-
iology of the emotional response (e.g. [19], [20].) There
are also spontaneous facial movements that accompany
speech. These movements are smooth and ballistic, and
are more typical of the subcortical system associated
with spontaneous expressions (e.g. [40]). There is some
evidence that arm-reaching movements transfer from one
motor system when they require planning to another when
they become automatic, with different dynamic charac-
teristics between the two [12]. It is unknown whether
the same thing happens with learned facial expressions.
An automated system would enable exploration of such
research questions.

C. The need for spontaneous facial expression databases

The machine perception community is in critical need
of standard video databases to train and evaluate systems
for automatic recognition of facial expressions. An im-
portant lesson learned from speech recognition research
is the need for large, shared databases for training, testing,
and evaluation, without which it is extremely difficult
to compare different systems and to evaluate progress.
Moreover, these databases need to be typical of real world
environments in order to train data-driven approaches and
for evaluating robustness of algorithms. An important step
forward was the release of the Cohn-Kanade database
of FACS coded facial expressions [28], which enabled
development and comparison of numerous algorithms.
Two more recent databases also make a major contribution
to the field: The MMI database which enables greater
temporal analysis as well as profile views [38], as well
as the Lin database which contains 3D range data for
prototypical expressions at a variety of intensities [30].
However, all of these databases consist of posed facial
expressions. It is essential for the progress of the field to
be able to evaluate systems on databases of spontaneous
expressions. As described above, spontaneous expressions
differ from posed expressions in both which muscles
are moved, and in the dynamics of those movements.
Development of these databases is a priority that requires
joint effort from the computer vision, machine learning,
and psychology communities. A database of spontaneous
facial expressions collected at UT Dallas [34] was a

Figure 2. Overview of fully automated facial action coding system.

significant contribution in this regard. The UT Dallas
database elicited facial expressions using film clips, and
there needs to be some concurrent measure of expression
content beyond the stimulus category since subjects often
do not experience the intended emotion and sometimes
experience another one (e.g. disgust or annoyance instead
of humor). FACS coding of this database would be
extremely useful for the computer vision community. We
present here a database of spontaneous facial expressions
that has been FACS coded using the Facial Action Coding
System.

D. System overview

Here we describe progress on a system for fully
automated facial action coding, and show preliminary
results when applied to spontaneous expressions. This was
the first system for fully automated expression coding,
presented initially in [3], and it extends a line of research
developed in collaboration with Paul Ekman and Terry
Sejnowski [11]. It is a user independent fully automatic
system for real time recognition of facial actions from
the Facial Action Coding System (FACS). The system
automatically detects frontal faces in the video stream
and codes each frame with respect to 20 Action units. In
previous work, we conducted empirical investigations of
machine learning methods applied to the related problem
of classifying expressions of basic emotions [31]. We
compared AdaBoost, support vector machines, and linear
discriminant analysis, as well as feature selection tech-
niques. Best results were obtained by selecting a subset
of Gabor filters using AdaBoost and then training Support
Vector Machines on the outputs of the filters selected
by AdaBoost. An overview of the system is shown in
Figure 2. Here we apply this system to the problem of
detecting facial actions in spontaneous expressions.

E. Relation to other work

There have been major advances in the computer vision
literature for facial expression recognition over the past
15 years. See [22], [36] for reviews. Much of the early
work on computer vision applied to facial expressions
focused on recognizing a few prototypical expressions
of emotion produced on command (e.g., ”smile”). Some
systems describe facial expressions in terms of component
movements, most notably coding standard developed for
MPEG4 which focuses on automatic coding of a set of
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facial feature points [10]. While coding standards like
MPEG4 are useful for animating facial avatars, behavioral
research may require more comprehensive information.
For example, MPEG4 does not encode some behaviorally
relevant movements such as the contraction of the orbic-
ularis oculi, which differentiates spontaneous from posed
smiles. It also does not encode changes in surface texture
such as wrinkles, bulges, and shape changes that are
critical for the definition of action units in the FACS
system. For example, a characteristic pattern of wrinkles
and bulges between the brows, as well as the shape of the
brow (arched vs. flat), are important for distinguishing a
basic brow raise (AU 1+2) from a fear brow (AU 1+2+4
shown in Figure 1, both of which entail upward movement
of the brows, but the brow raise is a common behavior that
emphasizes speech, shows engagement in conversation,
or indicates a question, whereas the fear brow occurs in
situations of danger and sometimes deception [26].

Several research groups have recognized the impor-
tance of automatically coding expressions in terms of
FACS [11], [29], [37], [45], [46]. Our approach differs
from others in that instead of designing special purpose
image features for each facial action, we employ machine
learning techniques for data-driven facial expression clas-
sification. These machine learning algorithms are applied
to image-based representations. Image-based machine
learning methods have been shown to be highly effective
for machine recognition tasks such as face detection [47],
and do not suffer from drift which is a major obstacle
to tracking methods. In this paper we show that such
systems capture information about action unit intensity
that can be employed for analyzing facial expression
dynamics. The image-based representation employed here
is the output of a bank of Gabor filters, although in
previous work we have applied machine learning to the
image features as well, and found that the Gabor features
are related to those developed by machine learning [2].
Learned classifiers taking such representations as input
are sensitive not only to changes in position of facial
features, but also to changes in image texture such as
those created by wrinkles, bulges, and changes in feature
shapes. We found in practice that image-based representa-
tions contain more information for facial expression than
representations based on the relative positions of a finite
set of facial features. For example, our basic emotion
recognizer [31] gave a higher performance on the Cohn-
Kanade dataset than an upper-bound on feature tracking
computed by another group based on manual feature point
labeling. We distinguish here feature-point tracking from
the general category of motion-based representations. One
may describe motion with spatio-temporal Gabor filters,
for example, resulting in a representation related to the
one presented here. At issue is whether reducing the
image to a finite set of feature positions is a good
representation. Ultimately, combining image-based and
motion based representations may be the most powerful.y

Tian et al. [45] employ traditional computer vision
techniques for state-of-the-art feature tracking. In this

approach, specialized image features such as contour
parameters are defined for each desired facial action.
Pantic and Rothcrantz [37] use robust facial feature
detection followed by an expert system to infer facial
actions from the geometry of the facial features. More
recent work from this group presented approaches to
measuring facial actions in profile views, and recognizing
expression dynamics from temporal rules [35]. Their
approach is more heuristic than the data-driven system
presented here. A strength of data-driven systems is that
they learn the variations in appearance of a facial action
due to differences in physiognomy, age, and elasticity,
and also when an action occurs in combination with other
facial actions. Nonlinear support vector machines have the
added advantage of being able to handle multimodal data
distributions which can arise with action combinations,
provided that the class of kernel is well matched to the
problem. A group at MIT presented a prototype system
for fully automated FACS coding that used infrared eye
tracking to register face images [29]. The recognition
component is similar in spirit to the one presented here,
employing machine learning techniques on image-based
representations. Kapoor et al. used PCA (eigenfeatures)
as the feature vector, whereas we previously found that
PCA was a much less effective representation than Gabor
wavelets for facial action recognition (see [11], [31]. More
recently, [46], applied a dynamical Bayesian model to
the output of a front-end FACS recognition system based
on the one developed in our laboratory [3], [4]. While
[46] showed that AU recognition benefits from learning
causal relations between AU’s in the training database, the
analysis was developed and tested on a posed expression
database. It will be important to extend such work to
spontaneous expressions for the reasons described above.

II. A UTOMATED SYSTEM

A. Real-time Face Detection

We developed a real-time face detection system that
employs boosting techniques in a generative frame-
work [23] and extends work by [47]. Enhancements
to [47] include employing Gentleboost instead of Ad-
aBoost, smart feature search, and a novel cascade train-
ing procedure, combined in a generative framework.
Source code for the face detector is freely available
at http://kolmogorov.sourceforge.net. Accuracy on the
CMU-MIT dataset, a standard public data set for bench-
marking frontal face detection systems, is 90% detections
and 1/million false alarms, which is state-of-the-art accu-
racy. The CMU test set has unconstrained lighting and
background. With controlled lighting and background,
such as the facial expression data employed here, detec-
tion accuracy is much higher. All faces in the training
datasets, for example, were successfully detected. The
system presently operates at 24 frames/second on a 3 GHz
Pentium IV for 320x240 images.

The automatically located faces were rescaled to 96x96
pixels. The typical distance between the centers of the
eyes was roughly 48 pixels. Automatic eye detection
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[23] was employed to align the eyes in each image. The
images were then passed through a bank of Gabor filters
8 orientations and 9 spatial frequencies (2:32 pixels per
cycle at 1/2 octave steps) (See [31]). Output magnitudes
were then passed to the classifiers. No feature selection
was performed for the results presented here, although it
is ongoing work that will be presented in another paper.

B. Facial Action Classification

Facial action classification was assessed for two clas-
sifiers: Support vector machines (SVM’s) and AdaBoost.

a) SVM’s.: SVM’s are well suited to this task be-
cause the high dimensionality of the Gabor representation
O(105) does not affect training time, which depends
only on the number of training examples O(102). In our
previous work, linear, polynomial, and radial basis func-
tion (RBF) kernels with Laplacian, and Gaussian basis
functions were explored [31]. Linear and RBF kernels
employing a unit-width Gaussian performed best on that
task. Linear SVMs are evaluated here on the task of facial
action recognition.

b) AdaBoost.:The features employed for the Ad-
aBoost AU classifier were the individual Gabor filters.
This gave 9x8x48x48= 165,888 possible features. A sub-
set of these features was chosen using AdaBoost. On each
training round, the Gabor feature with the best expres-
sion classification performance for the current boosting
distribution was chosen. The performance measure was
a weighted sum of errors on a binary classification task,
where the weighting distribution (boosting) was updated
at every step to reflect how well each training vector was
classified. AdaBoost training continued until 200 features
were selected per action unit classifier. The union of all
features selected for each of the 20 action unit detectors
resulted in a total of 4000 features.

III. FACIAL EXPRESSION DATA

A. The RU-FACS Spontaneous Expression Database

Mark Frank, in collaboration with Javier Movellan and
Marian Bartlett, has collected a dataset of spontaneous
facial behavior with rigorous FACS coding. The dataset
consists of 100 subjects participating in a ’false opin-
ion’ paradigm. In this paradigm, subjects first fill out
a questionnaire regarding their opinions about a social
or political issue. Subjects are then asked to either tell
the truth or take the opposite opinion on an issue where
they rated strong feelings, and convince an interviewer
they are telling the truth. Interviewers were retired police
and FBI agents. A high-stakes paradigm was created by
giving the subjects $50 if they succeeded in fooling the
interviewer, whereas if they were caught they were told
they would receive no cash, and would have to fill out
a long and boring questionnaire. In practice, everyone
received a minimum of $10 for participating, and no one
had to fill out the questionnaire. This paradigm has been
shown to elicit a wide range of emotional expressions as
well as speech-related facial expressions [26]. This dataset

is particularly challenging both because of speech-related
mouth movements, and also because of out-of-plane head
rotations which tend to be present during discourse.

Subjects faces were digitized by four synchronized
Dragonfly cameras from Point Grey. (See Figure 3). The
analysis in this paper was conducted using the video
stream from the frontal view camera. Two minutes of each
subject’s behavior is being FACS coded by two certified
FACS coders. FACS codes include the apex frame as
well as the onset and offset frame for each action unit
(AU). To date, 33 subjects have been FACS-coded. Here
we present preliminary results for a system trained on
two large datasets of FACS-coded posed expressions, and
tested on the spontaneous expression database. Future
work will include spontaneous expressions in training as
well. Here we explore how well a system trained on posed
expressions under controlled conditions performs when
applied to real behavior.

Figure 3. Sample synchronized camera views from the RU-FACS
spontaneous expression database.

B. Posed expression databases

Because the spontaneous expression database did not
yet contain sufficient labeled examples to train a data-
driven system, we trained the system on a larger set of
labeled examples from two FACS-coded datasets of posed
images. The first dataset was Cohn and Kanade’s DFAT-
504 dataset [28]. This dataset consists of 100 university
students ranging in age from 18 to 30 years. 65% were
female, 15% were African-American, and 3% were Asian
or Latino. Videos were recoded in analog S-video using
a camera located directly in front of the subject. Subjects
were instructed by an experimenter to perform a series
of 23 facial displays. Subjects began each display with a
neutral face. Before performing each display, an experi-
menter described and modeled the desired display. Image
sequences from neutral to target display were digitized
into 640 by 480 pixel arrays with 8-bit precision for
grayscale values. The facial expressions in this dataset
were FACS coded by two certified FACS coders.
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The second dataset consisted of directed facial actions
from 24 subjects collected by Ekman and Hager. (See
[11].) Subjects were instructed by a FACS expert on the
display of individual facial actions and action combina-
tions, and they practiced with a mirror. The resulting video
was verified for AU content by two certified FACS coders.

IV. T RAINING

The combined dataset contained 2568 training exam-
ples from 119 subjects. Separate binary classifiers, one for
each AU, were trained to detect the presence of the AU
regardless of the co-occurring AU’s. We refer to this as
context-independent recognition. Positive examples con-
sisted of the last frame of each sequence which contained
the expression apex. Negative examples consisted of all
apex frames that did not contain the target AU plus neutral
images obtained from the first frame of each sequence, for
a total of 2568-N negative examples for each AU.

V. GENERALIZATION PERFORMANCEWithin DATASET

We first report performance for generalization to
novel subjectswithin the Cohn-Kanade and Ekman-Hager
databases. Generalization to new subjects was tested using
leave-one-subject-out cross-validation in which all images
of the test subject were excluded from training. Results
for the AdaBoost classifier are shown in Table I. System
outputs were the output of the AdaBoost discriminant
function for each AU. All system outputs above threshold
were treated as detections.

Figure 4. ROC curves for 8 AU detectors, tested on posed expressions.

The system obtained a mean of 91% agreement with
human FACS labels. Overall percent correct can be an
unreliable measure of performance, however, since it
depends on the proportion of targets to non-targets, and
also on the decision threshold. In this test, there was a far
greater number of non-targets than targets, since targets
were images containing the desired AU (N in Table I, and
non-targets were all images not containing the desired AU
(2568-N). A more reliable performance measure is area
under the ROC (receiver-operator characteristic curve.)
This curve is obtained by plotting hit rate (true positives)
against false alarm rate (false positives) as the decision
threshold varies. See Figure 4. The area under this curve
is denoted A′. A′ is equivalent to percent correct in a 2-
alternative forced choice task, in which the system must
choose which of two options contains the target on each
trial. Mean A′ for the posed expressions was 92.6.

TABLE I.
PERFORMANCE FOR POSED EXPRESSIONS.

Shown is fully automatic recognition of 20 facial actions, generalization
to novel subjects in the Cohn-Kanade and Ekman-Hager databases. N:
Total number of positive examples. P: Percent agreement with Human
FACS codes (positive and negative examples classed correctly). Hit, FA:
Hit and false alarm rates. A′: Area under the ROC. The classifier was
AdaBoost.

AU Name N P Hit FA A′

1 Inn. brow raise 409 92 86 7 95
2 Out. brow raise 315 88 85 12 92
4 Brow lower 412 89 76 9 91
5 Upper lid raise 286 92 88 7 96
6 Cheek raise 278 93 86 6 96
7 Lower lid tight 403 88 89 12 95
9 Nose wrinkle 68 100 88 0 100
10 Lip Raise 50 97 29 2 90
11 Nasolabial 39 94 33 4 74
12 Lip crnr. pull 196 95 93 5 98
14 Dimpler 32 99 20 0 85
15 Lip crnr. depr. 100 85 85 14 91
16 Lower Lip depr. 47 98 29 1 92
17 Chin raise 203 89 86 10 93
20 Lip stretch 99 92 57 6 84
23 Lip tighten 57 91 42 8 70
24 Lip press 49 92 64 7 88
25 Lips part 376 89 83 9 93
26 Jaw drop 86 93 58 5 85
27 Mouth stretch 81 99 100 1 100

Mean 90.9 80.1 8.2 92.6

Figure 5. System performance (area under the ROC) for posed facial
actions. Actions were sorted in order of detection performance. High,
middle, and low-performing AU’s are illustrated.

Figure 5 contains a graphical depiction of performance
sorted in order of A’. High, middle, and low performing
action units are illustrated. We note that both the highest
and lowest performance was obtained with lower-face
AU’s (AU’s 9-27), while mid-range performance was
obtained for brow and eye region actions (AU’s 1-7).

A. Effect of training set size

We next investigated to what degree the performance
variation related to training set size. Inspection of the
ROC curves in Figure 4 suggests a dependence of sys-
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tem performance on the number of training examples.
Figure /reffig:numex plots area under the roc against
training set size for all 20 AU’s tested. The scatter plot is
elbow-shaped, where action units with the fewest training
examples also had the lowest performance, and then the
plot flattens for training set sizes substantially greater than
100. Action units 27 and 9 are reliably detected despite
relatively small training set sizes, suggesting these two
may be easier to detect.

Figure 6. Scatter plot of system performance (area under theROC)
against training set size for the 20 AU’s in Table I.

VI. GENERALIZATION TO SPONTANEOUS

EXPRESSIONS

We then tested the system described in Section IV on
a new dataset of spontaneous expressions, the RU-FACS
dataset. The dataset included speech related mouth and
face movements, and significant amounts of in-plane and
in-depth rotations.

A. characterization of head pose during spontaneous
expression

Figure 7. Distribution of head poses in frontal view camera during
expression apex.

TABLE II.
HEAD POSE DISTRIBUTION DURING EXPRESSION APEX.

Mean sd 67% Interval 96% Interval

Yaw -6.50 8.90 [-150, 20] [-240, 110]
Pitch -8.50 7.10 [-160, 20] [-230, 50]
Roll -2.80 7.40 [-100, 40] [-180, 20]

In contrast to the highly controlled conditions of posed
expression databases, in spontaneous behavior the head
pose of subjects varies from frontal. In order to character-
ize the distribution of head pose during spontaneous facial
expressions, we manually labeled the head pose for the
action unit apex frames for 473 images from 21 subjects.
Head pose was labeled by rotating a 3D head model with
the arrow keys until it matched the head pose in the
image. To assist alignment, an initial estimate of head
pose was calculated from eye, nose, and mouth positions.
In addition, the face image was projected onto the 3D
head model and then back into the image plane from the
estimated pose, in order to match the projected face with
the face in the image.

Figure 7 shows the distribution of yaw, pitch, and roll
during expression apex. The histograms show that each
of these three head orientation measures ranges from
approximately−300 to 200. Table II gives the mean and
standard deviations of yaw, pitch, and roll. The mean head
pose in this dataset is80 down and60 to the left, which
is likely a result of the constraints of camera placement,
in which the camera was placed over the right shoulder
of the interviewer. Roll (or in-plane rotation) is the most
straightforward to correct in computer vision systems. In
both yaw and pitch, approximately 30% of all apex frames
were between150 and 250 from frontal, and no images
in our sample were rotated beyond300

B. AU recognition: Spontaneous Expressions

Preliminary recognition results are presented for 12
subjects. This data contained a total of 1689 labeled
events, consisting of 33 distinct action units, 19 of which
were AU’s for which we had trained classifiers. Face
detections were accepted if the face box was greater than
150 pixels width, both eyes were detected with positive
position, and the distance between the eyes was> 40
pixels. This resulted in faces found for 95% of the video
frames. Most non-detects occurred when there was head
rotations beyond±100 or partial occlusion. All detected
faces were passed to the AU recognition system.

Here we present benchmark performance of the basic
frame-by-frame system on the video data. Figure 8 shows
sample system outputs for one subject, and performance
is shown in Figure 5 and Table III. Performance was
assessed several ways. First, we assessed overall percent
correct for each action unit on a frame-by-frame basis,
where system outputs that were above threshold inside the
onset and offset interval indicated by the human FACS
codes, and below threshold outside that interval were

28 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER



a

b

Figure 8. Sample system outputs for a 10-second segment containing
a brow-raise (FACS code 1+2). System output is shown for AU 1 (left)
and AU 2 (right). Human codes are overlayed for comparison (onset,
apex, offset).

TABLE III.
RECOGNITION OF SPONTANEOUS FACIAL ACTIONS.

AU: Action unit number. N: Total number of testing examples.P: Percent
correct over all frames. Hit, FA: Hit and false alarm rates. A′: Area under
the ROC. A′

∆
: Area under the ROC for interval analysis (see text). The

classifier was AdaBoost.

AU N P Hit FA A′ A′

∆

1 169 87 35 9 78 83
2 153 84 29 13 62 68
4 32 97 15 2 74 84
5 36 97 7 1 71 76
6 50 92 32 4 90 92
7 46 91 12 7 64 66
9 2 99 0 0 88 93
10 38 95 0 0 62 65
11 3 99 0 0 73 83
12 119 86 45 7 86 88
14 87 94 0 0 70 77
15 77 94 23 4 69 73
16 5 99 0 0 63 57
17 121 93 15 2 74 76
20 12 99 0 0 66 69
23 24 98 0 0 69 75
24 68 95 7 3 64 63
25 200 54 68 50 70 73
26 144 91 2 1 63 64

Mean 93 15 5 71 75

considered correct. This gave an overall accuracy of 93%
correct across AU’s for the AdaBoost classifier. Mean area
under the ROC was .71.

Next an interval analysis was performed, which was
intended to serve as a baseline for future analysis of out-

Figure 9. AU recognition performance (area under the ROC) for
spontaneous facial actions. Performance is overlayed on the posed results
of Figure 5.

put dynamics. The interval analysis measured detections
on intervals of length I. Here we present performance for
intervals of length 21 (10 on either side of the apex), but
performance was stable for a range of choices of I. A
target AU was treated as present if at least 6/21 frames
were above threshold, where the threshold was set to 1
standard deviation above the mean. Negative examples
consisted of the remaining 2 minute video stream for each
subject, outside the FACS coded onset and offset intervals
for the target AU, parsed into intervals of 21 frames. This
simple interval analysis raised the area under the ROC to
.75.

TABLE IV.
COMPARISON OFADABOOST TO LINEARSVM’ S.

The task is AU classification in the spontaneous expression database.
A′

∆
: Area under the ROC for interval analysis (see text).

AdaBoost SVM
AU N A′ A′

∆
A′ A′

∆

1 169 78 83 73 83
2 153 62 68 63 76
4 32 74 84 74 86
5 36 71 76 63 73
10 38 62 65 60 71
12 119 86 88 84 90
14 87 70 77 65 73
20 12 66 69 60 74

Mean 71.1 76.3 67.8 78.3

C. AdaBoost v. SVM performance

Table IV compares AU recognition performance with
AdaBoost to a linear SVM. In previous work with posed
expressions of basic emotions, AdaBoost performed sim-
ilarly to SVM’s, conferring a marginal advantage over
the linear SVM [31]. Here we support this finding for
recognition of action units in spontaneous expressions.
AdaBoost had a small advantage over the linear SVM
which was statistically significant on a paired t-test (
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t(7)=3.1, p=.018). A substantial performance increase was
incurred for both classifiers by employing the interval
analysis. Here the outputy was first converted to Z-
scores for each subjectz = (y − µ/σ), and then z was
integrated over a window of 11 frames. The The temporal
information in the classifier outputs contain considerable
information that we intend to exploit in future work.

VII. T HE MARGIN PREDICTS EXPRESSION INTENSITY

Figure 10 shows a sample of system outputs for a 2
minute 20 second continuous video stream from the spon-
taneous expression database. Inspection of such output
streams suggested that the system output, which was the
distance to the separating hyperplane (the margin), con-
tained information about expression intensity. A stronger
relationship was observed for the outputs of the posed
data, which had less noisy image conditions. System
outputs for full image sequences of test subjects from
the posed data are shown in Figure 11. Although each
individual image is separately processed and classified,
the outputs change smoothly as a function of expression
magnitude in the successive frames of each sequence.

Figure 10. Output trajectory for a 2 minute 20 sec. video (6000 frames),
for one subject and one action unit. Shown is the margin (the distance
to the separating hyperplane). The human FACS labels are overlaid for
comparison. Blue stars indicate the frame at which the AU apex was
coded. The frames within the onset and offset of the AU are shown in
red. Letters A-E indicate AU intensity, with E highest.

a

b

Figure 11. Automated FACS measurements for full image sequences.
a. Surprise expression sequences from 4 subjects containing AU’s 1,2
and 5. b. Disgust expression sequences from 4 subjects containing AU’s
4,7 and 9.

Intensity correlation: Posed data:A correlation anal-
ysis was performed in order to explicitly measure the
relationship between the output margin and expression
intensity. In order to assess this relationship in low noise
conditions, we first performed the analysis for posed ex-
pressions. The posed data contains no speech, negligible
head rotation, and consequently less luminance variation
than the spontaneous data. In addition, the posed database
was the training database, which enabled us to measure
the degree to which the SVM learned about expression
intensity for validation subjects in the same database as
the training set.

Ground truth for action unit intensity was measured
as follows: Five certified FACS coders labeled the action
intensity for 108 images from the Ekman-Hager database.
The images were four upper-face actions (1, 2, 4, 5) and
two lower-face actions (10, 20), displayed by 6 subjects.
Three images from each sequence were displayed: one
immediately after onset, one at apex, and one intermediate
frame. Images were presented in random order, and the
FACS experts were asked to label both the AU and the AU
intensity. In keeping with FACS coding procedures, the
experts scored intensity on an A through E scale, where
A is lowest, and E is highest. The experts did not always
agree with the FACS label in the database, particularly
for the lowest intensity frames. Disagreement rate was
5.3% for the upper-face actions and 8.5% for the lower-
face actions. Intensities were included in the subsequent
analysis only for frames on which the experts agreed with
the AU label in the database.

We first measured the degree to which expert FACS
coders agree with each other on intensity. Correlations
were computed separately for each action unit. Correla-
tions were computed between intensity scores by each
pair of experts, and the mean correlation was computed
across all expert pairs. The results are given in Table V.
Because individual faces differ in the amount of wrinkling
and movement for a given facial action, the correlations
were computed two ways: within-subject and between-
subject, where ’subject’ refers to the person displaying the
action unit. Within-subject correlations effectively remove
differences in mean and variance between individuals, and
is similar to computing a Z-score prior to correlating. For
the within-subject analysis, correlations were computed
separately for each subject, and the mean was computed
across subjects. Mean correlation between expert FACS
coders within subject was 0.84.

Correlations of the automated system with the human
expert intensity scores were next computed. The SVM’s
were retrained on the even-numbered subjects of the
Cohn-Kanade and Ekman-Hager datasets, and then tested
on the odd-numbered subjects of the Ekman-Hager set,
and vice versa. Correlations were computed between the
SVM margin and the intensity ratings of each of the five
expert coders. The analysis was again performedwithin
subject, and then means were computed for each AU
by collapsing across subject. The results are shown in
Table VA. Overall mean correlation between the SVM
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margin and the expert FACS coders was 0.83, which was
very similar to the human-human correlation of .84.

The analysis was next repeated between-subjects, and
the results are shown in Table VB. For the between-
subject analysis, all subjects displaying the action unit
were included in a single correlation for each AU. We see
that the expert agreement dropped about 10% to .73 by
doing the between-subject correlation. For the SVM, the
agreement with expert humans dropped to .53. This shows
that the system will benefit from online learning of scale
and threshold for each subject, since the within-subject
analysis effectively removed mean and scale differences
between subjects.

TABLE V.
HUMAN -SVM INTENSITY CORRELATIONS.

Expert-Expert is the mean correlation (r) across 5 human FACS experts.
SVM-Expert is the mean correlation of the margin with intensity rating
from each of the 5 experts. A. Correlations were computedwithin
subject displaying the facial action. B. Correlations werecomputed
acrosssubjects displaying the facial action.

A. Within Subject, posed
Action Unit

1 2 4 5 10 20 Mean

Expert-Expert .92 .77 .85 .72 .88 .88 .84
SVM-Expert .90 .80 .84 .86 .79 .79 .83

B. Between Subject, posed
Action Unit

1 2 4 5 10 20 Mean

Expert-Expert .77 .64 .79 .63 .75 .79 .73
SVM-Expert .47 .85 .45 .39 .36 .69 .53

TABLE VI.
HUMAN -SVM INTENSITY CORRELATIONS, SPONTANEOUS DATA.

Action Unit
1 2 4 5 10 12 14 20 Mean

.31 .09 .38 .51 .29 .75 .16 .33 .35

Intensity correlation: Spontaneous data:The cor-
relation analysis was then repeated for the spontaneous
expression data. This effectively tests how well the rela-
tionship between the margin and the intensity generalizes
to a new dataset, and also how well it holds up in the
presence of noise from speech and head movements. The
intensity codes in the RU-FACS dataset were used as
ground truth for action intensity. Correlations were com-
puted between the margin of the linear SVM and the AU
intensity as coded by the human coders for each subject
for the 8 AU’s shown in Table IV. As above, correlations
were computed within subject, and then collapsed across
subject to provide a mean correlation for each AU. The
overall mean correlation was r=0.35. There was much
variability in the correlations across AU. AU 12, for
example, had a correlation of 0.75 between the margin

and FACS intensity score. The correlations for the spon-
taneous expression data were overall substantially smaller
than for the posed data. Nevertheless, for some facial
actions the system extracted a signal about expression
intensity on this very challenging dataset.

VIII. P ERFORMANCE FACTORS

A. Effect of Compression

For many applications of automatic facial expression
analysis, image compression is desirable in order to make
an inexpensive, flexible system. The image analysis meth-
ods employed in this system, such as Gabor filters, may
be more robust to lossy compression compared to other
image analysis methods such as optic flow. We there-
fore investigated the relationship between AU recognition
performance and image compression. Detectors for three
action units (AU 1, AU2, and AU4) were compared when
tested at five levels of compression: No loss (original bmp
images), and 4 levels of jpeg compression quality: 100%,
75in Figure 12. Performance remained consistent across
substantial quantities of lossy compression. This finding
is of practical importance for system design.

Figure 12. Effects of compression on AU recognition performance.

B. Handling AU combinations

When they occur together, facial actions can take on
a very different appearance from when the occur in
isolation. A similar effect happens in speech recognition
with phonemes, and is called a co-articulation effect. The
SVM’s in this study were trained to detect an action unit
regardless of whether it occurs alone or in combination
with other action units. However, as in speech recognition,
we may obtain better performance by training dedicated
detectors for certain AU combinations.

An AU combination analysis was performed on the
three brow action units (1, 2, 4). The analysis was
performed on a set of linear SVM’s trained on half of
the Ekman-Hager database and tested on the other half.
AU’s 1 and 2 pull the brow up (centrally and laterally,
respectively), whereas AU 4 pulls the brows together and
down using primarily the corrugator muscle at the bridge
of the nose. The appearance of AU 4 changes dramatically
depending on whether it occurs alone or in combination
with AU 1 and 2. Inspection of Table VII shows that
performance may benefit from treating AU4 separately.
We also see that it is not necessary or desirable to treat all
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AU combinations separately. For example, performance
does not benefit from treating AU 1 and AU 2 separately.

TABLE VII.
COMBINATION ANALYSIS

Performance for a linear SVM trained to detect specific combinations
of the brow AU’s. Target = target set for training. Non-targets during
training were all other AU’s in the Ekman-Hager database. There were
no spontaneous examples of 2+4.

Posed Spont.
Target A’ A’

AU 1 alone or in comb. 93.5 72.6
Individual AU 1 only 72.7 60.4

AU 2 alone or in comb. 92.8 69.8
Individual AU 2 only 59.2 53.4

AU 4 alone or in comb. 83.2 65.4
Individual AU 4 only 85.0 60.1

1+2 98.2 70.5
1+4 89.4 60.1
2+4 95.8 –

1+2+4 90.8 68.5

IX. CONCLUSIONS

The current state of the art in automatic face and
gesture recognition suggests that user independent, fully
automatic real time coding of facial expressions in the
continuous video stream is an achievable goal with
present computer power. The system presented here oper-
ates in real time. Face detection runs at 24 frames/second
in 320x240 images on a 3 GHz Pentium IV. The AU
recognition step operates in less than 10 msec per action
unit.

The next step in the development of automatic facial
expression recognition systems is to begin to apply them
to spontaneous expressions for real applications. Spon-
taneous facial behavior differs from posed expressions
both in which muscles are moved, and in the dynamics
of those movements. These differences are described in
more detail in the Introduction. The step to spontaneous
behavior involves handling variability in head pose, and
often the presence of speech, in addition to handling the
wide variety of facial muscle constellations that occur in
natural behavior.

This paper presented preliminary results for a fully
automated facial action detection system on a database
of spontaneous facial expressions. These results provide
a benchmark for future work on spontaneous expression
video. The system was able to extract information about
facial actions in this dataset despite substantive differ-
ences between the spontaneous expressions and the posed
data on which it was trained. While at this time there
is insufficient FACS-labeled spontaneous expressions to

support training of data-driven systems exclusively on
spontaneous expressions, a combined training approach is
possible, and an important next step is to explore systems
trained on a combined posed and spontaneous dataset.
Preliminary results in our lab using such a combined
dataset, and testing with cross-validation, show that per-
formance is substantively improved on the spontaneous
expression data, while performance declines on the posed
data. This finding reinforces the differences between
posed and spontaneous expressions.

A significant finding from this paper is that data-
driven classifiers such as SVM’s learned information
about expression intensity. The distance to the separating
hyperplane, the margin, was significantly correlated with
facial action intensity codes. Current work in our lab
is showing a similar relationship with Adaboost, where
in the case of AdaBoost, it is the likelihood ratios in
the Adaboost discriminant function that correlate with
measures of expression intensity. The system therefore
is able to provide information about facial expression dy-
namics in the frame-by-frame intensity information. This
information can be exploited for deciding the presence of
a facial action and decoding the onset, apex, and offset.
It will also enable explorations of the dynamics of facial
behavior, as discussed below.

The accuracy of automated facial expression mea-
surement in spontaneous behavior may be considerably
improved by 3D alignment of faces. Moreover, infor-
mation about head movement dynamics is an important
component of nonverbal behavior, and is measured in
FACS. Members of this group have developed techniques
for automatically estimating 3D head pose in a generative
model and for aligning face images in 3D [32]. We are
also exploring feature selection techniques. Our previous
work with expressions of basic emotion showed that
feature selection by AdaBoost significantly enhanced both
speed and accuracy of SVM’s [31]. We are presently ex-
ploring whether such advantages found for basic emotion
recognition carry over to the task of AU detection in
spontaneous expressions.

The system presented here is fully automated, and per-
formance rates for posed expressions compare favorably
with other systems tested on the Cohn-Kanade dataset that
employed varying levels of manual registration. A stan-
dard database of FACS coded spontaneous expressions
would be of great benefit to the field and we are preparing
to make the RU-FACS spontaneous expression database
available to the research community.

A. Applications

Man-machine interaction for education:A major
thrust of research in human-computer and human-robot
interaction is the development of tools for education.
Expression measurement tools enable automated tutoring
systems that recognize the emotional and cognitive state
of the pupil and respond accordingly. Such systems would
also assist robots and animated agents to establish social
resonance. Research has shown that behaviors including
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mirroring facial expressions and head movements assists
in generating social rapport and can lead to increased
information transfer between humans (e.g. [5], [7]. Such
behaviors may increase the effectiveness of animated
agents and robots designed for education environments.
In addition, there is evidence suggesting that automatic
tutors can become more effective if they use information
about the eye movements of the students [1], [43].

Behavioral Science and Psychiatry:Tools for auto-
matic expression measurement would enable tremendous
new research activity not only in emotion, but also social
psychology, development, cognitive neuroscience, psy-
chiatry, education, human-machine communication, and
human social dynamics. These tools will bring about
paradigmatic shifts in these fields by making facial ex-
pression more accessible as a behavioral measure. New
research activities enabled by this technology include
studying the cognitive neuroscience of emotion, mood
regulation, and social interaction; measuring the efficacy
of psychiatric treatment including new medications, and
studying facial behavior in psychiatric and developmental
disorders.

Dynamics of facial behavior:Automated expression
measurement tools developed in projects such as the
one presented here will enable investigations into the
dynamics of human facial expression that were previ-
ously infeasible with manual coding. This would allow
researchers to directly address a number of questions
key to understanding the nature of the human emotional
and expressive systems, and their roles interpersonal
interaction, psychopathology, and development. Previous
research with manual coding has shown differences in the
dynamics of spontaneous expressions compared to posed,
as well as differences in the facial dynamics of patients
with neuropathology (e.g. schizophrenia). Research has
also shown that subtle movement differences between felt
and unfelt expressions can be a critical indicator of social
functioning, of the progress and remission of depression,
and of suicide potential, as well as provide signs of
deception [21], [26]. There are very few experiments of
this nature because of the time burden of manual coding
of dynamics, and the coding that has been done measures
only coarse information about dynamics.

Security: Automatic facial action measurement has
profound consequences on law enforcement and counter
terrorism. Careful laboratory studies show that many of
the clues to concealed emotion and deceit currently used
in law enforcement training programs may be quite unre-
liable. Moreover, research based on facial action coding
showed that more reliable cues exist in facial behavior
[26]. Extracting this information requires detailed analysis
of facial expression. Real-time automated coding can non-
obtrusively supplement the other information available
to interviewers, screeners, and law enforcement agents
by identifying subtle or conflicted expressions that may
betray someone’s true emotional state. Automatic Expres-
sion coding will also enable more thorough investigation
of the role of facial expression in deception.
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