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Abstract

We present a systematic comparison of machine learning
methods applied to the problem of fully automatic recog-
nition of facial expressions, including AdaBoost, support
vector machines, and linear discriminant analysis. Each
video-frame is first scanned in real-time to detect approx-
imately upright-frontal faces. The faces found are scaled
into image patches of equal size, convolved with a bank
of Gabor energy filters, and then passed to a recognition
engine that codes facial expressions into 7 dimensions in
real time: neutral, anger, disgust, fear, joy, sadness, sur-
prise. We report results on a series of experiments compar-
ing spatial frequency ranges, feature selection techniques,
and recognition engines. Best results were obtained by se-
lecting a subset of Gabor filters using AdaBoost and then
training Support Vector Machines on the outputs of the fil-
ters selected by AdaBoost. The generalization performance
to new subjects for a 7-way forced choice was 93% or more
correct on two publicly available datasets, the best perfor-
mance reported so far on these datasets. Surprisingly, reg-
istration of internal facial features was not necessary, even
though the face detector does not provide precisely regis-
tered images. The outputs of the classifier change smoothly
as a function of time and thus can be used for unobtrusive
motion capture. We developed an end-to-end system that
provides facial expression codes at 24 frames per second
and animates a computer generated character. In real-time
this expression mirror operates down to resolutions of 16
pixels from eye to eye. We also applied the system to fully
automated facial action coding.

1. Introduction

We present results on a user independent fully automatic
system for real time recognition of basic emotional expres-
sions from video. The system automatically detects frontal
faces in the video stream and codes each frame with respect
to 7 dimensions: Neutral, anger, disgust, fear, joy, sadness,
surprise. We conducted empirical investigations of machine
learning methods applied to this problem, including com-
parison of recognition engines, feature selection techniques,
spatial frequency ranges, and methods for multiclass deci-
sions with binary classifiers. Best results were obtained by
selecting a subset of Gabor filters using AdaBoost and then
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training Support Vector Machines on the outputs of the fil-
ters selected by AdaBoost. The combination of AdaBoost
and SVM’s enhanced both speed and accuracy of the sys-
tem. The system presented here is fully automatic and op-
erates in real-time at a high level of accuracy (93% general-
ization to new subjects on a 7-alternative forced choice).

2. Facial Expression Data

The facial expression system was trained and tested on
Cohn and Kanade’s DFAT-504 dataset [11]. This dataset
consists of 100 university students ranging in age from 18 to
30 years. 65% were female, 15% were African-American,
and 3% were Asian or Latino. Videos were recoded in ana-
log S-video using a camera located directly in front of the
subject. Subjects were instructed by an experimenter to per-
form a series of 23 facial expressions. Subjects began and
ended each display with a neutral face. Before performing
each display, an experimenter described and modeled the
desired display. Image sequences from neutral to target dis-
play were digitized into 640 by 480 pixel arrays with 8-bit
precision for grayscale values.

For our study, we selected the 313 sequences from the
dataset that were labeled as one of the 6 basic emotions.
The sequences came from 90 subjects, with 1 to 6 emotions
per subject. The first and last frames (neutral and peak)
were used as training images and for testing generalization
to new subjects, for a total of 625 examples. The trained
classifiers were later applied to the entire sequence.

2.1 Real-time Face Detection

We developed a real-time face detection system that em-
ploys boosting techniques in a generative framework [8]
and extends work by [24]. Enhancements to [24] include
employing Gentleboost instead of Adaboost, smart feature
search, and a novel cascade training procedure, combined
in a generative framework. Source code for the face detec-
tor is freely available at http://kolmogorov.sourceforge.net.
The face detector was trained on 5000 faces and millions
of non-face patches from about 8000 images collected from
the web by Compaq Research Laboratories. Accuracy on
the CMU-MIT dataset, a standard public data set for bench-
marking frontal face detection systems, is 90% detections
and 1/million false alarms, which is state-of-the-art accu-
racy. The CMU test set has unconstrained lighting and
background. With controlled lighting and background, such



as the facial expression data employed here, detection accu-
racy is much higher. The system presently operates at 24
frames/second on a 3ghz Pentium 1V for 320x240 images.

All faces in the DFAT-504 dataset were successfully de-
tected. The automatically located faces were rescaled to
48x48 pixels. The typical distance between the centers of
the eyes was roughly 24 pixels. No further registration was
performed. Many other approaches to automatic facial ex-
pression recognition include explicit detection and align-
ment of internal facial features. The recognition system
presented here performs well without that step, providing a
considerable savings in processing time. The images were
converted into a Gabor magnitude representation, using a
bank of Gabor filters at 8 orientations and 5 spatial frequen-
cies (4:16 pixels per cycle at 1/2 octave steps) [14].

3. Facial Expression Classification

We first examined facial expression classification based on
support vector machines (SVM’s). SVM’s are well suited
to this task because the high dimensionality of the Gabor
representation O(10°) does not affect training time, which
depends only on the number of training examples O(102).
The system performed a 7-way forced choice between the
following emotion categories: Happiness, sadness, surprise,
disgust, fear, anger, neutral.

3.1. Strategies for multiclass decisions with
SVM’s

Support vector machines make binary decisions. There are
a number of methods for making multiclass decisions with
a set of binary classifiers. (See [10] for a review). Here,
the seven-way forced choice for six emotions plus neutral
was trained in two stages. In stage I, support vector ma-
chines performed binary decision tasks. We explored three
approaches to training binary decisions: one-versus-one,
one-versus-all, and all possible partitions. Stage Il converts
the representation produced by the first stage into a proba-
bility distribution over the seven expression categories. To
this effect, we have implemented and evaluated several ap-
proaches: K-nearest neighbor, a simple voting scheme, and
multinomial logistic ridge regression.

I. Partitioning into binary decisions. There are a num-
ber of strategies for partitioning the classification task into
binary decisions. The simplest strategy is to train 1 versus
all. Pairwise partitioning strategies have been advocated by
[13] and [20], whereas others (e.g. [4]) advocate exploring
the space of all possible partitions.

For pairwise partitioning (1:1), SVM’s were trained to
discriminate all pairs of emotions. For seven categories that
makes 21 SVM’s. In 1:1 partitioning, the number of train-
ing samples for each SVM may be relatively small. If some
subjects performed some expressions and not others, as in
this dataset, identity signals can interfere with the learning
of expression. To avoid this, we trained on identity-matched
pairs, where for example, the happy vs. surprise SVM is
trained on only those subjects who gave samples of both
happiness and surprise. An alternative to training SVM’s

to discriminate each pair of emotions was to train SVM’s
to discriminate one emotion from everything else (1:all).
This strategy employed a larger number of training exam-
ples, 626, which diluted identity effects. An extension of
the 1:all approach was to consider all possible non-trivial
binary partitions of the classes. With 7 classes, there are
seven 1:6 classifiers, twenty one 2:5 classifiers and thirty
five 3:4 classifiers.

I1. Combining outputs of multiple binary classifiers. In
the system presented here, the SVM outputs were combined
to make a 7 alternative forced choice. The most common
way to combine SVM outputs for multiclass decisions is
by voting. This procedure counts the number of stage 1
classifiers aligned with each emotion. For example, if one
SVM indicates happiness and not surprise, happiness gets
+1 and surprise gets -1. These votes are summed over all
of the SVM’s. Softmax ensures each class is allocated a
number between 0 and 1, with unit sum over classes. We
also explored a variation on voting which uses the sum of
the classifier margins, which are typically clustered around
+1 or -1, instead of the binary outputs. This variation made
little difference, and the voting results presented here use
binary outputs. We compared voting to nearest neighbor,
and to a learned mapping based on multinomial logistic
ridge regression (MLR). In nearest neighbor, the contin-
uous SVM output (the margin) for each of the n SVM’s
gives an n-dimensional pattern vector. The test image is as-
signed the class of the training image with the shortest Eu-
clidean distance between their pattern vectors. MLR learns
the weight matrix that maps the outputs of Stage one clas-
sifiers onto the 7 emotions. MLR is a maximum likeli-
hood approach, which is equivalent to a single layer percep-
tron with weight decay and with SoftMax competition be-
tween the outputs. The regression was implemented using
the Newton-Raphson method and a ridge term coefficient of
0.001. The advantage of this data-dependent second stage
is that it could learn common confusions and biases which
lead to errors in a direct voting situation.

Nnbr Voting MLR

linear 1:1 82.7 81.6 85.8
SVM’s 1:all 81.6 86.2 87.5
all poss. | 83.0 87.2 89.4

nonlinear 1:1 83.2 82.9 86.1
SVM’s 1:all 81.4 88.0 89.8
all poss. | 85.1 89.9 904

Table 1: Comparison of strategies for multiclass decisions using
SVM’s.

Results Generalization to novel subjects was tested using
leave-one-subject-out cross-validation. Results are given in
Table 1. Linear, polynomial, and RBF kernels with Lapla-
cian, and Gaussian basis functions were explored. Lin-
ear and RBF kernels employing a unit-width Gaussian per-
formed best, and are presented here. The soft margin ap-



proach, allowing some training examples to lie within the
margin, did not enhance performance.

For Stage I, partitioning the classification task into bi-
nary decisions, 1:all usually outperformed 1:1 partitioning,
and all possible partitions gave the best performance. Of
the Stage 1l strategies for combining the outputs of multiple
SVM’s into a 7-way forced choice, MLR was substantially
better than nearest neighbor (5.3 percentage points). Vot-
ing was slightly but consistently less effective than MLR,
typically 1.3 percent for 1:all and all partitions.

For the comparisons in the subsequent sections, 1:all par-
titioning followed by voting was employed due to training
speed. The optimal strategies determined in this section (all
possible partitions and MLR) will be reintroduced in the fi-
nal system.

3.2. SVM’s and Adaboost

SVM performance was next compared to Adaboost for
emotion classification. The features employed for the Ad-
aboost emotion classifier were the individual Gabor fil-
ters. The comparison was performed using 48x48 pixel im-
ages at 5 spatial scales (4:16 pixels per cycle). This gave
5x8x48x48=92,160 possible features. A subset of these fea-
tures was chosen using Adaboost. On each training round,
the Gabor feature with the best expression classification per-
formance for the current boosting distribution was chosen.
The performance measure was a weighted sum of errors on
a binary classification task, where the weighting distribu-
tion (boosting) was updated at every step to reflect how well
each training vector was classified.

Adaboost training continued until the classifier output
distributions for the positive and negative samples were
completely separated by a gap proportional to the widths
of the two distributions (see Figure 1). The union of all fea-
tures selected for each of the 7 emotion classifiers resulted
in a total of 538 features.

Classification results are given in Table 2. The general-
ization performance with Adaboost was comparable to lin-
ear SVM performance. Adaboost had a substantial speed
advantage, as shown in Table 3. There was a 170-fold re-
duction in the number of Gabor filters used. The convo-
lutions were calculated in pixel space, rather than Fourier
space which reduced the advantage of feature selection, but
it nevertheless resulted in a substantial speed benefit.

3.3 Combining feature selection by Adaboost
with classification by SVM’s

Adaboost is not only a fast classifier, it is also a feature
selection technique. An advantage of feature selection by
Adaboost is that features are selected contingent on the fea-
tures that have already been selected. In feature selection by
Adaboost, each Gabor filter is a treated as a weak classifier.
Adaboost picks the best of those classifiers, and then boosts
the weights on the examples to weight the errors more. The
next filter is selected as the one that gives the best perfor-
mance on the errors of the previous filter. At each step, the
chosen filter can be shown to be uncorrelated with the out-
put of the previous filters [9, 21].
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Figure 1: Stopping criteria for Adaboost training. a. Output of
one expression classifier during Adaboost training. The response
for each of the training examples is shown as a function of number
features as the classifier grows. b. Generalization error as a func-
tion of the number of features chosen by Adaboost. Generalization
error does not increase with ’overtraining’.
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Figure 2: SVM'’s learn weights for the continuous outputs
of all 92160 Gabor filters. AdaBoost selects a subset of
features and learns weights for the thresholded outputs of
those filters. AdaSVM’s learn weights for the continuous
outputs of the selected filters.

We explored training SVM classifiers on the features
selected by Adaboost. When the SVM’s were trained on
the thresholded outputs of the selected Gabor features, they
performed no better than Adaboost. However, we trained
SVM'’s on the continuous outputs of the selected filters.
We informally call these combined classifiers AdaSVM.
AdaSVM’s outperformed straight Adaboost by 3.8 percent
points, a difference that was statistically significant (z=1.99,
p=0.02). AdaSVM’s outperformed SVM’s by an average of
2.7 percent points, an improvement that was marginally sig-
nificant (z = 1.55, p = 0.06).

Distribution of spatial frequencies selected by Adaboost.
The Gabor features selected by AdaBoost provide one in-
dication of the spatial frequencies that are important for
this task. Figure 3 shows the number of chosen features
at each of the 5 wavelengths used. Examination of this
frequency distribution suggested that a wider range of spa-
tial frequencies, particularly in the high spatial frequencies,



w kernel | Adaboost SVM AdaSVM

4:16 Linear 87.2 86.2 88.8

4:16 RBF 88.0 90.7
2:32  Linear 90.1 88.0 93.3
2:32 RBF 89.1 93.3
Table 2: Leave-one-out generalization performance of Ad-

aboost,SVM’s and AdaSVM’s (48x48 images). w: Gabor wave-
length range, sampled at 0.5 octave intervals.

SVM Adaboost AdaSVM
Lin RBF | Lin RBF

Time t t 90t 0.01t 0.01t 0.0125t
Time t/ t 90t 0.16t 0.16t 0.2t
Memory | m  90m 3m 3m 3.3m

Table 3: Processing time and memory considerations. Time t’
includes the extra time to calculate the outputs of the 538 Gabors
in pixel space for Adaboost and AdaSVM, rather than the full FFT
employed by the SVM’s.

could potentially improve performance. Indeed, by increas-
ing from 5 to 9 spatial frequencies (2:32 pixels per cy-
cle at 0.5 octave steps), performance of the AdaSVM im-
proved to 93.3% correct. (See Table 2.) At this spatial
frequency range, the performance advantage of AdaSVM’s
was greater. AdaSVM'’s outperformed both AdaBoost
(z=2.1, p=.02) and SVM’s (z=2.6, p<.01). Moreover, as
the input size increases, the speed advantage of AdaSVM’s
becomes even more apparent. The full Gabor representa-
tion was 7 times larger than before, whereas the number
of Gabors selected by Adaboost only increased by a factor
of 1.7. The result of 93% accuracy for a user-independent
7-alternative forced choice was encouraging given that pre-
viously published results on this database were 81-83
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Figure 3: Wavelength distribution of features selected by Ad-
aboost. With 48x48 images, the distribution of selected features
was skewed to the shorter wavelengths. Doubling the resolution
and including more Gabors in the shorter wavelengths made the
distribution more balanced. For comparison, 4 to 16 pixels per cy-
cle in 48x48 images is equivalent to 8 to 32 pixels per cycle in the
96x96 images.
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We then reintroduced the approaches to multiclass
SVM’s found to be optimal in Section 3.1, and applied them

to the AdaSVM system. Results for using all possible class
partitions and training an MLR matrix instead of voting are
shown in Table 4. The performance enhancement with these
approaches is small, if any. Optimal performance with the
AdaSVM was obtained with the simpler paradigm of 1:all
partitions and voting, which is a considerable savings in
training time over all possible partitions and MLR.

SVM AdaSVM AdaSVM AdaSVM
Partitioning | 1:all L:all all poss.  all poss.
Combining | vote vote vote MLR
‘ 89.8 93.1 93.8 93.5

Table 4: Performance of all possible partitions and MLR for
AdaSVM’s. Performance is shown for nonlinear SVM’s and
AdaSVM’s (with 900 features) for 96x96 images and 9 Gabor
wavelengths (2:32).

Number of Support Vectors We next examined the ef-
fect of feature selection by Adaboost on the number of sup-
port vectors. Smaller numbers of support vectors proffer
two advantages: (1) the classification procedure is faster,
and (2) the expected generalization error decreases as the
number of support vectors decreases [23]. The number of
support vectors for the linear SVM ranged from 10 to 33
percent of the total number of training vectors. Nonlinear
SVM’s employed 14 to 43 percent, despite better gener-
alization performance. Feature selection by Adaboost re-
duced the number of support vectors employed by the non-
linear SVM in the AdaSVM system, to 12 to 26 percent.

4 Comparison to Linear Discrimi-
nant Analysis

A previous successful approach to basic emotion recogni-
tion used Linear Discriminant Analysis (LDA) to classify
Gabor representations of images [16]. While LDA may be
optimal when the class distributions are Gaussian, SVM’s
may be more effective when the class distributions are
not Gaussian. Table 5 compares LDA with linear SVM’s.
The classifiers were tested on 48x48 images using the nine
wavelength Gabor representation (2:32 pix/cyc). A small
ridge term was used in LDA.

The performance results for LDA were dramatically
lower than SVMs. Performance with LDA improved by ad-
justing the decision threshold for each emotion so as to bal-
ance the number of false detects and false negatives. This
approach is labeled LDA- in Table 5. This form of thresh-
old adjustment is commonly employed with LDA classi-
fiers, but it uses post-hoc information, whereas the SVM
performance was without post-hoc information. Even with
the threshold adjustment, the linear SVM performed signif-
icantly better.

4.1 Feature selection using PCA

Many approaches to LDA also employ PCA to perform fea-
ture selection prior to classification. For each classifier we



searched for the number of PCA components which gave
maximum LDA performance, which was typically 40 to 70
components. The PCA step resulted in a substantial im-
provement. The combination of PCA and threshold ad-
justment gave performance accuracy of 80.7% for the 7-
alternative forced choice, which was comparable to other
LDA results in the literature [16]. Nevertheless, the lin-
ear SVM outperformed LDA even with the combination of
PCA and threshold adjustment. SVM performance on the
PCA representation was significantly reduced, indicating an
incompatibility between PCA and SVM’s for the problem.

4.2 Feature selection using Adaboost

We next examined whether feature selection by Adaboost
gave better performance with LDA than feature selection
by PCA. Adaboost was used to select 900 features from
9x8x48x48=165888 possible Gabor features which were
then classified by LDA (Table 5). Feature selection with
Adaboost gave better performance with the LDA classifier
than feature selection by PCA. Using Adaboost for feature
selection reduced the difference in performance between
LDA and SVM’s. Nevertheless, SVM’s continued to out-
perform LDA.

LDA-6 SVM (linear)
Feature selection

None 44.4 88.0
PCA 80.7 75.5
Adaboost 88.2 93.3

Table 5: Top Row: Comparing SVM performance to LDA on
48x48 pixel images. The two classifiers are compared with no fea-
ture selection, with feature selection by PCA, and feature selection
by Adaboost.

4.3 Image alignment

Another difference from previous implementations of LDA
for expression recognition was image alignment. Was LDA
more sensitive to alignment noise than SVM’s? Expression
recognition performance using the automatically detected
face images was compared to performance using images
that were aligned using hand-labeling of internal feature
points. Six points on each face image were manually lo-
cated with a mouse (the corners of each eye, the nose tip,
and the mouth center). Eye centers were defined as the
mean of the eye corners. Images were then rotated in the
plane so that the eyes were horizontal and scaled to align
the eye centers as well as the midpoint between the mouth
and nose tip.

As shown in Table 6, the hand alignment offered no im-
provement in performance over the automatically aligned
face images for either LDA or SVM’s.

5. Generalization to other datasets

We tested the system on a second publicly available data
set, Pictures of Facial Affect (POFA) [6]. POFA contains

| PCA-LDA-§ SVM  AdaSVM

Face Finder 80.7 88.0 93.3
Hand Aligned 76.8 86.2 91.3

Table 6: Comparison of performance with automatically located
faces (top row) and hand aligned faces (lower row).

110 images from 14 subjects posing facial expressions. The
facial displays were guided by Ekman’s observations of the
facial expressions of basic emotion. The best published re-
sult on this dataset until now [3] is 90%, but this was a mean
over a set of two-way forced choices. In this paper we con-
duct a 7-way forced choice, where chance is 14% instead of
50%.

Results are shown in Table 7. AdaSVM’s trained and
tested on this dataset using leave one subject out cross-
validation obtained 97.3% accuracy with a linear kernel,
and 95.5% with an RBF kernel. Feature selection by Ad-
aboost had a significant impact on performance for this
dataset. SVM’s trained on the full set of Gabors obtained
only 79.1% correct. Feature selection may be particularly
important for training SVM’s on smaller datasets such as
this.

Training and testing on a combined dataset consisting
of both DFAT-504 and POFA also gave strong recognition
results. Generalization performance was again tested using
leave-one-subject-out cross-validation.

AdaSVM  AdaSVM

linear RBF

POFA 97.3 95.5

DFAT-504+POFA 91.4 93.1

Train: DFAT-504 Test: POFA 56.0 60.0

Table 7: Generalization performance using leave-one-out cross-
validation on the POFA dataset alone and on the combined DFAT-
504 and POFA datasets. The bottom row gives performance for
training on DFAT-504 and testing on POFA. The AdaSVMs were
tested for 96x96 images, 9 frequencies, and 953 Adaboost fea-
tures.

Generalization across datasets was substantially lower.
A nonlinear AdaSVM trained on DFAT-504 and tested on
POFA obtained 60% correct. This highlights the need for
large training datasets of facial expressions with variations
in image conditions in order to generalize across image col-
lection environments. While the Face Finder was trained on
a large number of faces (5000 positive and millions of neg-
ative examples) with many lighting conditions and other ir-
regularities, the only condition being roughly frontal pose,
the expression coder was trained on a single dataset with
a uniformly controlled environment. The result is that the
face finder is robust to real-world application, while the ex-
pression coder performs well only within a given dataset or
combination of datasets.



6 Real-time expression recognition
from video

We combined the face detection and expression recognition
into a system that operates on live digital video in real time.
Face detection operates at 24 frames/second in 320x240 im-
ages on a 3 ghz Pentium IV. The expression recognition step
operates in less than 10 msec. Figure 4 shows the output of
the expression recognizer for a test video in which the sub-
ject posed a series of facial expressions. The traces show
outputs of each of the seven emotion detectors. The output
of the sadness detector increases as he poses a sad expres-
sion, and anger increases as he poses anger. The output for
neutral increases as the subject passes through neutral in be-
tween.
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Figure 4: Examples of real-time emotion code traces from a test
video sequence. The top row shows frames from the sequence.
Continuous outputs of each of the 7 expression detectors is given
below.

Although each individual image is separately processed
and classified, the outputs change smoothly as a function of
time, particularly under illumination and background condi-
tions that are favorable for alignment. (See Figure 5). This
enables applications for measuring the magnitude and dy-
namics of facial expressions.
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Figure 5: Outputs of the SVM’s trained for neutral and sadness
for a full test image sequence of a subject performing sadness from
the DFAT-504 database.The SVM output is the distance to the sep-
arating hyperplane (the margin).

To demonstrate the potential of this system we developed
areal time “emotion mirror’ which renders a 3D character in

real time that mimics the emotional expression of a person.
(See Figure 6). The emotion mirror is a prototype system
that recognizes the emotion of the user and responds in an
engaging way.

In the emotion mirror, the face-finder captures a face im-
age which is sent to the emotion classifier. For speed, the
emotion classifier employed the linear AdaSVM. The out-
puts of the 7-emotion classifier constitutes a 7-D emotion
code. This code was sent to CU Animate, a set of soft-
ware tools for rendering 3D computer animated characters
in real time, developed at the Center for Spoken Language
Research at CU Boulder. The 7-D emotion code gave a
weighted combination of morph targets for each emotion.
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Figure 6: Examples of the emotion mirror. The animated charac-
ter mirrors the facial expression of the user.

7 Automated Facial Action Coding

In order to objectively capture the richness and complex-
ity of facial expressions, behavioral scientists have found it
necessary to develop objective coding standards. The facial
action coding system (FACS) [7] is the most objective and
comprensive coding system in the behavioral sciences. A
human coder decomposes facial expressions in terms of 46
component movements. A longstanding research direction
in the Machine Perception Laboratory is to automatically
recognize facial actions (e.g. [5, 1, 2]. Three groups be-
sides ours have focused on automatic FACS recognition as
a tool for behavioral research:[22, 19, 12]. Systems to date
still require considerable manual input, unless infrared sig-
nals are available for locating the eyes (e.g. [12]).

Here we apply the system presented above to the prob-
lem of fully automated facial action coding. The machine
learning techniques presented above were repeated, where
facial action labels replaced the basic emotion labels. Face
images were detected and aligned automatically in the video
frames and sent directly to the recognition system.

The system was again trained on Cohn and Kanade’s
DFAT-504 dataset which contains FACS scores by two cer-
tified FACS coders in addition to the basic emotion labels.
Automatic eye detection [8] was employed to align the eyes
in each image. Seven support vector machines, one for each
AU, were trained to detect the presence of a given AU, re-



gardless of the co-occuring AU’s. Positive examples con-
sisted of the last (peak) frame of each sequence, and nega-
tive examples consisted of all peak frames that did not con-
tain the target AU, plus 313 neutral images obtained from
the first frame of each sequence. A nonlinear radial basis
function kernel was employed. Generalization to new sub-
jects was tested using leave-one-out cross-validation. The
results are shown in Table 8. System outputs for full image
sequences of test subjects are shown in Figure 7.

The system obtained a mean of 92.9% agreement with
human FACS labels for fully automatic recognition of 7 up-
per facial actions. This is an exciting result, as performance
rates are equal to or better than other systems tested on
this dataset that employed manual registration. ( [22, 12]).
Kapoor et al. obtained 81.2% correct on this dataset, us-
ing hand marked pupil positions for alignment. Tian et al.
obtained a similar level of performance to ours, but hand-
marked a set of feature points in neutral expression images
immediately preceding each movement. The high perfor-
mance rate obtained by our system is the result of many
years of systematic comparisons, (such as those presented
here, and also in [5, 1]), investigating which image fea-
tures (representations) are most effective, which classifiers
are most effective, optimal resolution and spatial frequency,
feature selection techniques, and comparing flow-based to
texture-based recognition.

The approach to automatic FACS coding presented here,
in addition to being fully automated, also differs from ap-
proaches such as [19] and [22] in that instead of designing
special purpose image features for each facial action, we ex-
plore general purpose learning mechanisms for data-driven
facial expression classification. These methods merge ma-
chine learning and biologically inspired models of human
vision. These mechanisms can be applied to recognition of
any facial action given a training data set. The approach de-
tects not only changes in position of feature points, but also
changes in image texture such as those created by wrinkles,
bulges, and changes in feature shapes.

AU AU code Agreement No.examples
Inner brow raise 1 935 123
Outer brow raise 2 96.3 83
Brow corrugator 4 89.1 143
Upper lid raise 5 91.9 85
Cheek raise 6 93.9 93
Lower lid tight 7 87.2 85
Nose wrinkle 9 98.7 43

Table 8: Generalization results for fully automatic recognition of
7 upper facial actions.

8 Future directions

The automated facial expression measurement systems de-
scribed above aligned faces in the 2D plane. Spontaneous
behavior can contain considerable out-of-plane head rota-
tion. The accuracy of automated facial expression measure-
ment may be considerably improved by 3D alignment of
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Figure 7: Automated FACS measurements for full image se-
quences. a. Surprise expression sequences from 2 subjects scored
by the human coder as containing AU’s 1,2 and 5. Curves show
automated system output for AU’s 1,2 and 5. b. Disgust expression
sequences from 2 subjects scored by the human coder as contain-
ing AU’s 4,7 and 9. Curves show automated system output for
AU’s 4,7 and 9.

faces. Also, information about head movement dynamics is
an important component of FACS. Members of this group
have developed techniques for automatically estimating 3D
pose in a generative model [18] and for warping faces to
frontal. See figure 8. In the near future, this process will be
integrated into our system for recognizing expressions from
video of unconstrained interactions.

a_- b.

Figure 8: Head pose estimation and warping to frontal views. a.
4 camera views of a subject at one instant. b. Head pose estimate
for each of 4 camera views. c. Face images warped to frontal.

We are presently exploring applications of this system
including automatic evaluation of human-robot interaction
[15], and deployment in automatic tutoring systems [17]
and social robots. We are also exploring clinical appli-
cations, including psychiatric diagnosis and measuring re-
sponse to treatment.

9 Conclusions

We presented a systematic comparison of machine learning
methods applied to the problem of fully automatic recogni-
tion of facial expressions, including AdaBoost, support vec-
tor machines, and linear discriminant analysis. We reported
results on a series of experiments comparing methods for
multiclass decisions, spatial frequency ranges, feature se-
lection methods, and recognition engines. Best results were
obtained by selecting a subset of Gabor filters using Ad-
aBoost and then training Support Vector Machines on the
outputs of the filters selected by AdaBoost. The combi-
nation of Adaboost and SVM’s enhanced both speed and
accuracy of the system. The generalization performance to
new subjects for a 7-way forced choice was 93.3% and 97%
correct on two publicly available datasets, the best perfor-
mance reported so far on these datasets. Surprisingly, reg-
istration of internal facial features was not necessary, even



though the face detector does not provide precisely regis-
tered images. The outputs of the classifier change smoothly
as a function of time and thus can be used for unobtrusive
motion capture.

The general purpose learning mechanisms presented
here for data-driven facial expression classification can be
applied to recognition of any facial expression dimension
given a training dataset. Here we presented results for both
automatic recognition of basic emotions and automatic fa-
cial action coding.

Our results suggest that user independent, fully auto-
matic real time coding of facial expressions in the contin-
uous video stream is an achievable goal with present com-
puter power, at least for applications in which frontal views
can be assumed. The problem of classification of facial
expressions can be solved with high accuracy by a simple
linear system, after the images are preprocessed by a bank
of Gabor filters. Linear systems carry a small performance
penalty (92.5% instead of 93.3%) but are faster for real-time
applications (see table 3). Feature selection speeds up sys-
tems based on non-linear SVM’s into the real-time range.
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