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Abstract

We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions,

including AdaBoost, support vector machines, and linear discriminant analysis. Each video-frame is first scanned in real-time to detect

approximately upright-frontal faces. The faces found are scaled into image patches of equal size, convolved with a bank of Gabor energy filters,

and then passed to a recognition engine that codes facial expressions into 7 dimensions in real time: neutral, anger, disgust, fear, joy, sadness,

surprise. We report results on a series of experiments comparing spatial frequency ranges, feature selection techniques, and recognition engines.

Best results were obtained by selecting a subset of Gabor filters using AdaBoost and then training Support Vector Machines on the outputs of the

filters selected by AdaBoost. The generalization performance to new subjects for a 7-way forced choice was 93% or more correct on two publicly

available datasets, the best performance reported so far on these datasets. The outputs of the classifier change smoothly as a function of time and

thus can be used for unobtrusive expression dynamics capture. We developed an end-to-end system that provides facial expression codes at 24

frames per second and animates a computer-generated character. In real-time this expression mirror operates down to resolutions of 16 pixels from

eye to eye. We also applied the system to fully automated facial action coding.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We present results on a user independent fully automatic

system for real time recognition of basic emotional expressions

from video. The system automatically detects frontal faces in

the video stream and codes each frame with respect to seven

dimensions: Neutral, anger, disgust, fear, joy, sadness, surprise.

We conducted empirical investigations of machine learning

methods applied to this problem, including comparison of

recognition engines, feature selection techniques, spatial

frequency ranges, and methods for multiclass decisions with

binary classifiers. Best results were obtained by selecting a

subset of Gabor filters using AdaBoost and then training

Support Vector Machines on the outputs of the filters selected

by AdaBoost. The combination of AdaBoost and SVM’s

enhanced both speed and accuracy of the system. The system

presented here is fully automatic and operates in real-time at a
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high level of accuracy (93% generalization to new subjects on a

7-alternative forced choice).

2. Facial expression data

The facial expression system was trained and tested on

Cohn and Kanade’s DFAT-504 dataset [15]. This dataset

consists of 100 university students ranging in age from 18 to 30

years. 65% were female, 15% were African-American, and 3%

were Asian or Latino. Videos were recoded in analog S-video

using a camera located directly in front of the subject. Subjects

were instructed by an experimenter to perform a series of 23

facial expressions. Subjects began and ended each display with

a neutral face. Before performing each display, an exper-

imenter described and modeled the desired display. Image

sequences from neutral to target display were digitized into 640

by 480 pixel arrays with 8-bit precision for grayscale values.

For our study, we selected the 313 sequences from the dataset

that were labeled as one of the 6 basic emotions. The sequences

came from 90 subjects, with 1–6 emotions per subject. The first

and last frames (neutral and peak) were used as training images

and for testing generalization to new subjects, for a total of 625

examples. The trained classifiers were later applied to the entire

sequence.
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2.1. Real-time face detection

We developed a real-time face detection system that

employs boosting techniques in a generative framework [11]

and extends work by [28]. Enhancements to [28] include the

use of continuous non-linear transfer functions rather than

binary threshold functions, smart feature search, and a novel

cascade training procedure, combined in a generative frame-

work. Source code for the face detector is freely available at

http://mplab.ucsd.edu. The face detector was trained on 5000

faces and millions of non-face patches from about 8000 images

collected from the web by Compaq Research Laboratories.

Accuracy on the CMU-MIT dataset, a standard public data set

for benchmarking frontal face detection systems, is 90%

detections and 1/million false alarms, which is state-of-the-art

accuracy. The CMU test set has unconstrained lighting and

background. With controlled lighting and background, such as

the facial expression data employed here, detection accuracy is

much higher. The system presently operates at 24 frames/s on a

3 ghz Pentium IV for 320!240 images.

All faces in the DFAT-504 dataset were successfully

detected. The automatically located faces were rescaled to

48!48 pixels. The typical distance between the centers of the

eyes was roughly 24 pixels. Many other approaches to

automatic facial expression recognition include explicit

detection and alignment of internal facial features. We found

that further registration based facial features was not necessary

for this task, thus providing considerable savings in processing

time, without sacrificing performance. The images were

converted into a Gabor magnitude representation, using a

bank of Gabor filters at 8 orientations and 5 spatial frequencies

(4:16 pixels per cycle at 1/2 octave steps) [18].

3. Facial expression classification

We first examined facial expression classification based on

support vector machines (SVM’s). SVM’s are well suited to

this task because the high dimensionality of the Gabor

representation O(105) does not affect training time, which

depends only on the number of training examples O(102). The

system performed a 7-way forced choice between the

following emotion categories: Happiness, sadness, surprise,

disgust, fear, anger, neutral.

3.1. Strategies for multiclass decisions with SVM’s

Support vector machines make binary decisions. There are a

number of methods for making multiclass decisions with a set

of binary classifiers. (See [14] for a review). Here, the seven-

way forced choice for six emotions plus neutral was trained in

two stages. In stage I, support vector machines performed

binary decision tasks. We explored three approaches to training

binary decisions: one-versus-one, one-versus-all, and all

possible partitions. Stage II converts the representation

produced by the first stage into a probability distribution over

the seven expression categories. To this effect, we have

implemented and evaluated several approaches: K-nearest
neighbor, a simple voting scheme, and multinomial logistic

ridge regression.
3.1.1. Partitioning into binary decisions

There are a number of strategies for partitioning the

classification task into binary decisions. The simplest strategy

is to train 1 versus all. Pairwise partitioning strategies have

been advocated by [17] and [24], whereas others (e.g. [7])

advocate exploring the space of all possible partitions.

For pairwise partitioning (1:1), SVM’s were trained to

discriminate all pairs of emotions. For seven categories that

makes 21 SVM’s. In 1:1 partitioning, the number of training

samples for each SVM may be relatively small. If some

subjects performed some expressions and not others, as in this

dataset, identity signals can interfere with the learning of

expression. To avoid this, we trained on identity-matched pairs,

where for example, the happy vs. surprise SVM is trained on

only those subjects who gave samples of both happiness and

surprise. An alternative to training SVM’s to discriminate each

pair of emotions was to train SVM’s to discriminate one

emotion from everything else (1:all). This strategy employed a

larger number of training examples, 626, which diluted identity

effects. An extension of the 1:all approach was to consider all

possible non-trivial binary partitions of the classes. With 7

classes, there are seven 1:6 classifiers, twenty one 2:5

classifiers and thirty five 3:4 classifiers.
3.1.2. Combining outputs of multiple binary classifiers

In the system presented here, the SVM outputs were

combined to make a 7 alternative forced choice. The most

common way to combine SVM outputs for multiclass decisions

is by voting. This procedure counts the number of stage 1

classifiers aligned with each emotion. For example, if one SVM

indicates happiness and not surprise, happiness gets C1 and

surprise gets K1. These votes are summed over all of the

SVM’s. Softmax ensures each class is allocated a number

between 0 and 1, with unit sum over classes. We also explored

a variation on voting which uses the sum of the classifier

margins, which are typically clustered around C1 or K1,

instead of the binary outputs. This variation made little

difference, and the voting results presented here use binary

outputs.

We compared voting to nearest neighbor, and to a learned

mapping based on multinomial logistic ridge regression (MLR)

. In nearest neighbor, the continuous SVM output (the margin)

for each of the n SVM’s gives an n-dimensional pattern vector.

The test image is assigned the class of the training image with

the shortest Euclidean distance between their pattern vectors.

MLR learns the weight matrix that maps the outputs of Stage

one classifiers onto the seven emotions. MLR is a maximum

likelihood approach, which is equivalent to a single layer

perceptron with weight decay and with SoftMax competition

between the outputs. SVM’s are in some sense the limiting case

of MLR as the ridge term goes to zero. The regression was

implemented using the Newton–Raphson method and a ridge

term coefficient of 0.001. The advantage of this data-dependent



Fig. 1. Stopping criteria for Adaboost training. (a) Output of one expression

classifier during Adaboost training. The response for each of the training

examples is shown as a function of number features as the classifier grows. (b)

Generalization error as a function of the number of features chosen by

Adaboost. Generalization error did not increase with ’overtraining’.

Table 1

Comparison of strategies for multiclass decisions using SVM’s

Nnbr Voting MLR

Linear

SVM’s

1:1 82.7 81.6 85.8

1:all 81.6 86.2 87.5

all poss. 83.0 87.2 89.4

Nonlinear

SVM’s

1:1 83.2 82.9 86.1

1:all 81.4 88.0 89.8

all poss. 85.1 89.9 90.4
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second stage is that it could learn common confusions and

biases, which lead to errors in a direct voting situation.

Generalization results to novel subjects was tested using

leave-one-subject-out cross-validation. Results are given in

Table 1. Linear, polynomial, and RBF kernels with Laplacian

and Gaussian basis functions were explored. Linear and

Gaussian RBF kernels performed best and are presented here.

The latter showed very low sensitivity to Gaussian width

parameter szroot mean square pair-wise distances. The soft

margin approach, allowing some training examples to lie

within the margin, was not used, since it was not found to

improve generalization.

For Stage I, partitioning the classification task into binary

decisions, 1:all usually outperformed 1:1 partitioning, and all

possible partitions gave the best performance. Of the Stage II

strategies for combining the outputs of multiple SVM’s into a

7-way forced choice, MLR was substantially better than

nearest neighbor (5.3 percentage points). Voting was slightly

but consistently less effective than MLR, typically 1.3 percent

for 1:all and all partitions.

For the comparisons in the subsequent sections, 1:all

partitioning followed by voting was employed due to training

speed. The optimal strategies determined in this section (all

possible partitions and MLR) will be reintroduced in the final

system.

3.2. SVM’s and Adaboost

SVM’s and Adaboost are both well suited to the tasks

described in this paper, because they can cope with very large

representation space, they generalize well, perform decisions in

real-time and are simple to train. Here we review the

similarities between SVM’s and Adaboost, as well as show

where the two algorthms diverge.

SVM’s and Adaboost are both large margin classifiers. The

two approaches can be thought of as maximizing a margin that

depends on the weights a and the hypotheses h [12], although

Adaboost does not usually attain the maximum. In both

classifiers, the margin is of the following form:

max
a

min
i

ða:hðxiÞÞyi

jjajjjjhðxiÞjj
(1)

where xi and yi are the input and label for training example i.

One difference between the classifiers is that the norms in

the demoninator of Eq (1) are 2-norms for the standard form of

the SVM, whereas for Adaboost there is a 1-norm of a and an
infinity norm of h. In a high dimensional space, these

differences could lead to large differences in performance.

There are theoretical upper bounds on the generalization

errors for these classifiers, [4,12]. In practice however, the

empirical errors are well below these bounds and the

theoretical limit does not predict which classifier will work

best in a given applied setting.

The two approaches both concentrate on borderline

examples, examples that are more difficult to classify, although

they may differ somewhat in which examples are considered

borderline. In SVM’s the decision boundary is defined by those

training examples which are closest to the separating hyper-

plane, and which can be thought of as the most difficult to

classify. In Adaboost, the misclassified examples are boosted

relative to the other training examples during learning.

However, SVM selects particular examples (support vectors)

while adaboost selects features.

We compared SVM’s to Adaboost on the task of emotion

classification. The features employed for the emotion classifier

were the individual Gabor filters. There were 5 spatial scales

(4:16 pixels per cycle), 8 orientations, and 48!48 image

locations, giving 5!8!48!48Z92, 160 possible features.

A subset of these features was chosen using Adaboost. On each

training round, the Gabor feature with the best classification

performance for the current boosting distribution was chosen.

The performance measure was a weighted sum of errors on a

binary classification task, where the weighting distribution

(boosting) was updated at every step to reflect how well each

training vector was classified. Adaboost had an external

parameter consisting of the number of training rounds for

each emotion. We chose this parameter such that there was no

training error and the generalization error was flat. (see Fig. 1).

The union of all features selected for each of the seven emotion

classifiers resulted in a total of 538 features. When we

increased the number of the number of frequencies from 5 to 9

in Section 3.3, the total number of selected features was 900.

Classification results are given in Table 2. The generaliz-

ation performance with Adaboost was comparable to linear

SVM performance. Adaboost had a substantial speed advan-

tage, as shown in Table 3. There was a 170-fold reduction in

the number of Gabor filters used. The convolutions were

calculated in pixel space, rather than Fourier space, which



Table 3

Processing time and memory considerations

SVM Adaboost AdaSVM

Lin RBF Lin RBF

Time t T 90 t 0.01 t 0.01 t 0.0125 t

Time t 0 T 90 t 0.16 t 0.16 t 0.2 t

Memory M 90 m 3 m 3 m 3.3 m

Time t 0 includes the extra time to calculate the outputs of the 538 Gabors in

pixel space for Adaboost and AdaSVM, rather than the full FFT employed by

the SVM’s.

Fig. 2. SVM’s learn weights for the continuous outputs of all 92,160 Gabor

filters. AdaBoost selects a subset of features and learns weights for the

thresholded outputs of those filters. AdaSVM’s learn weights for the continuous

outputs of the selected filters.

Table 2

Leave-one-out generalization performance of Adaboost, SVM’s and

AdaSVM’s (48!48 images)

u kernel Adaboost SVM AdaSVM

4:16 Linear 87.2 86.2 88.8

4:16 RBF 88.0 90.7

2:32 Linear 90.1 88.0 93.3

2:32 RBF 89.1 93.3

u: Gabor wavelength range, sampled at 0.5 octave intervals.
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reduced the advantage of feature selection, but it nevertheless

resulted in a substantial speed benefit.
3.3. Combining feature selection by Adaboost

with classification by SVM’s

SVM’s have been shown to perform better when the feature

space is dense, meaning that each feature is highly relevant to

the problem [25]. We explored training SVM classifiers on the

features selected by Adaboost. Adaboost is not only a fast

classifier; it is also a feature selection technique. An advantage

of feature selection by Adaboost is that features are selected

contingent on the features that have already been selected. In

feature selection by Adaboost, each Gabor filter is a treated as a

weak classifier. Adaboost picks the best of those classifiers, and

then boosts the weights on the examples to weight the errors

more. The next filter is selected as the one that gives the best

performance on the errors of the previous filter. At each step,

the chosen filter can be shown to be uncorrelated with the

output of the previous filters [13,12].

SVM’s were trained on the features selected by Adaboost.

When we trained SVM’s on the thresholded outputs of the

selected Gabor features, they performed no better than

Adaboost. However, we trained SVM’s on the continuous

outputs of the selected filters. We informally call these

combined classifiers AdaSVM. AdaSVM’s outperformed

straight Adaboost by 3.8 percent points, a difference that was

statistically significant (zZ1.99, PZ0.02). AdaSVM’s out-

performed SVM’s by an average of 2.7 percent points, an

improvement that was marginally significant (zZ1.55, PZ
0.06). Adaboost and AdaSVM’s are much faster in application

(Fig. 2).
3.3.1. Distribution of spatial frequencies selected by Adaboost

The Gabor features selected by AdaBoost provide one

indication of the spatial frequencies that are important for this

task. Fig. 3 shows the number of chosen features at each of the

five wavelengths used. Examination of this frequency

distribution suggested that a wider range of spatial frequencies,

particularly in the high spatial frequencies, could potentially

improve performance. Indeed, by increasing from 5 to 9 spatial

frequencies (2:32 pixels per cycle at 0.5 octave steps),

performance of the AdaSVM improved to 93.3% correct.

(See Table 2.) At this spatial frequency range, the performance

advantage of AdaSVM’s was greater. AdaSVM’s outper-

formed both AdaBoost (zZ2.1, PZ.02) and SVM’s (zZ2.6,

p!.01). Moreover, as the input size increases, the speed

advantage of AdaSVM’s becomes even more apparent. The

full Gabor representation was seven times larger than before,

whereas the number of Gabors selected by Adaboost only

increased by a factor of 1.7. This system obtained 93.3%

accuracy on a user-independent 7-alternative forced choice.

Previously published results on this database were 80–88%

(e.g. [3,6,29]).

We then reintroduced the approaches to multiclass SVM’s

found to be optimal in Section 3.1, and applied them to the

AdaSVM system. Results for using all possible class partitions

and training an MLR matrix instead of voting are shown in

Table 4. The performance enhancement with these approaches

is small, if any. Optimal performance with the AdaSVM was

obtained with the simpler paradigm of 1:all partitions and

voting, which is a considerable savings in training time over all

possible partitions and MLR.
3.3.2. Number of support vectors

We next examined the effect of feature selection by

Adaboost on the number of support vectors. Smaller numbers

of support vectors proffer two advantages: (1) the classifi-

cation procedure is faster, and (2) the expected generalization

error decreases as the number of support vectors decreases

[27]. The number of support vectors for the linear SVM

ranged from 10 to 33 percent of the total number of training

vectors. Nonlinear SVM’s employed 14–43 percent, despite



Fig. 3. Frequency distribution of features selected by Adaboost. y-axis is the number selected features. x-axis is the frequency of the Gabor filters, in cycles per face.

(a) For five frequencies, ranging from 3 to 12 in half octave intervals, the distribution was skewed to the higher frequencies. (b) For nine frequencies ranging from 3

up to 48, the distribution was more balanced, peaking at roughly 17 cycles per face.
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better generalization performance. Feature selection by

Adaboost reduced the number of support vectors employed

by the nonlinear SVM in the AdaSVM system, to 12–26

percent.

4. Comparison to linear discriminant analysis

A previous successful approach to basic emotion recog-

nition used Linear Discriminant Analysis (LDA) to classify

Gabor representations of images [20]. While LDA may be

optimal when the class distributions are Gaussian, SVM’s may

be more effective when the class distributions are not Gaussian.

Table 5 compares LDA with linear SVM’s. The classifiers were

tested on 48!48 images using the nine wavelength Gabor

representation (2:32 pix/cyc). A small ridge term was used in

LDA.

The performance results for LDA were dramatically lower

than SVMs. Performance with LDA improved by adjusting the

decision threshold for each emotion so as to balance the

number of false detects and false negatives. This approach is

labeled LDA in Tables 5 and 6. This form of threshold
Table 5

Top row: comparing SVM performance to LDA on 48!48 pixel images

Feature selection LDA SVN(linear)

None 44.4 88.0

PCA 80.7 75.5

Adaboost 88.2 93.3

The two classifiers are compared with no feature selection, with feature

selection by PCA, and feature selection by Adaboost.

Table 4

Performance of all possible partitions and MLR for AdaSVM’s. Performance is

shown for nonlinear SVM’s and AdaSVM’s (with 900 features) for 96!96

images and 9 Gabor wavelengths (2:32)

Partitioning

combining

SVM 1:all

vote

AdaSVM 1:

all vote

AdaSVM all

poss. vote

AdaSVM all

poss. MLR

89.8 93.1 93.8 93.5
adjustment is commonly employed with LDA classifiers, but it

uses post-hoc information, whereas the SVM performance was

without post-hoc information. Even with the threshold

adjustment, the linear SVM performed significantly better.
4.1. Feature selection using PCA

Many approaches to LDA also employ PCA to perform

feature selection prior to classification. For each classifier we

searched for the number of PCA components which gave

maximum LDA performance, which was typically 40–70

components. The PCA step resulted in a substantial improve-

ment. The combination of PCA and threshold adjustment gave

performance accuracy of 80.7% for the 7-alternative forced

choice, which was comparable to other LDA results in the

literature [20]. Nevertheless, the linear SVM outperformed

LDA even with the combination of PCA and threshold

adjustment. SVM performance on the PCA representation

was significantly reduced, indicating an incompatibility

between PCA and SVM’s for the problem. PCA is an

unsupervised feature extraction method, and may focus on

aspects of the image variability that happen to be irrelevant to

the task. Adaboost explicitly focusses on features relevant to

the task at hand.
4.2. Feature selection using Adaboost

We next examined whether feature selection by Adaboost

gave better performance with LDA than feature selection by

PCA. Adaboost was used to select 900 features from 9!8!
48!48Z165,888 possible Gabor features which were then
Table 6

Comparison of performance with automatically located faces (top row) and

hand aligned faces (lower row)

PCA-LDA SVM AdaSVM

Face finder 80.7 88.0 93.3

Hand aligned 76.8 86.2 91.3
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classified by LDA (Table 5). Feature selection with Adaboost

gave better performance with the LDA classifier than feature

selection by PCA. Using Adaboost for feature selection

reduced the difference in performance between LDA and

SVM’s. Nevertheless, SVM’s continued to outperform LDA.
4.3. Image alignment

Another difference from previous implementations of LDA

for expression recognition was image alignment. Was LDA

more sensitive to alignment noise than SVM’s? Expression

recognition performance using the automatically detected face

images was compared to performance using images that were

aligned using hand-labeling of internal feature points. Six

points on each face image were manually located with a mouse

(the corners of each eye, the nose tip, and the mouth center).

Eye centers were defined as the mean of the eye corners.

Images were then rotated in the plane so that the eyes were

horizontal and scaled to align the eye centers as well as the

midpoint between the mouth and nose tip.

As shown in Table 6, the hand alignment offered no

improvement in performance over the automatically aligned

face images for either LDA or SVM’s. This is in part due to the

fact that the images are already frontal (up to 10 degrees) and

upright. This would not generalize to significant pose

variations.
5. Generalization to other datasets

We tested the system on a second publicly available data

set, Pictures of Facial Affect (POFA) [9]. POFA contains 110

images from 14 subjects posing facial expressions. The facial

displays were guided by Ekman’s observations of the facial

expressions of basic emotion. The best published result on this

dataset until now [5] is 90%, but this was a mean over a set of

two-way forced choices. In this paper we conduct a 7-way

forced choice, where chance is 14% instead of 50%.

Results are shown in Table 7. AdaSVM’s trained and

tested on this dataset using leave one subject out cross-

validation obtained 97.3% accuracy with a linear kernel, and

95.5% with an RBF kernel. Feature selection by Adaboost had

a significant impact on performance for this dataset. SVM’s

trained on the full set of Gabors obtained only 79.1% correct.

Feature selection may be particularly important for training
Table 7

Generalization performance using leave-one-out cross-validation on the POFA

dataset alone and on the combined DFAT-504 and POFA datasets

AdaSVM linear AdaSVM RBF

POFA 97.3 95.5

DFAT-504CPOFA 91.4 93.1

Train: DFAT-504 Test:

POFA

56.0 60.0

The bottom row gives performance for training on DFAT-504 and testing on

POFA. The AdaSVMs were tested for 96!96 images, 9 frequencies, and 953

Adaboost features.
SVM’s on smaller datasets such as this. We are currently

collecting a dataset of 250 thousand images to investigate this

problem further.

Training and testing on a combined dataset consisting of

both DFAT-504 and POFA also gave strong recognition

results. Generalization performance was again tested using

leave-one-subject-out cross-validation.

Generalization across datasets was substantially lower. A

nonlinear AdaSVM trained on DFAT-504 and tested on POFA

obtained 60% correct. This highlights the need for large

training datasets of facial expressions with variations in image

conditions in order to generalize across image collection

environments. While the Face Finder was trained on a large

number of faces (5000 positive and millions of negative

examples) with many lighting conditions and other irregula-

rities, the only condition being roughly frontal pose, the

expression coder was trained on a single dataset with a

uniformly controlled environment. The result is that the face

finder is robust to real-world application, while the expression

coder performs well only within a given dataset or combination

of datasets.

6. Real-time expression recognition from video

We combined the face detection and expression recog-

nition into a system that operates on live digital video in real

time. Face detection operates at 24 frames/s in 320!240

images on a 3 ghz Pentium IV. The expression recognition

step operates in less than 10 ms. Fig. 4 shows the output of the

expression recognizer for a test video in which the subject

posed a series of facial expressions. The traces show outputs

of each of the seven emotion detectors. The output of the

sadness detector increases as he poses a sad expression, and

anger increases as he poses anger. The output for neutral

increases as the subject passes through neutral between each

expression.

Although each individual image is separately processed

and classified, the outputs change smoothly as a function of
Fig. 4. Examples of real-time emotion code traces from a test video sequence.

The top row shows frames from the sequence. Continuous outputs of each of

the seven expression detectors is given below.



Fig. 5. Outputs of the SVM’s trained for neutral and sadness for a full test image

sequence of a subject performing sadness from the DFAT-504 database. The

SVM output is the distance to the separating hyperplane (the margin).

Fig. 7. Spontaneous reactions to emotive images and video. Upper section:

examples of frames from video sequences of subjects 1 and 2 responding to the

same stimulus. Lower section: traces for disgust (lower, blue curve) and joy

(upper, green-o curve) are shown for subjects 1 and 2.
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time, particularly under illumination and background con-

ditions that are favorable for alignment. (See Fig. 5). This

enables applications for measuring the magnitude and

dynamics of facial expressions.

To demonstrate the potential of this system we developed a

real time ‘emotion mirror’ which renders a 3D character in real

time that mimics the emotional expression of a person. (See

Fig. 6). The emotionmirror is a prototype system that recognizes

the emotion of the user and responds in an engaging way.

In the emotion mirror, the face-finder captures a face image

which is sent to the emotion classifier. The outputs of the

7-emotion classifier constitutes a 7D emotion code. This code

was sent to CU Animate, a set of software tools for rendering

3D computer animated characters in real time, developed at the

Center for Spoken Language Research at CU Boulder [21]. The

7D emotion code gave a weighted combination of morph

targets for each emotion.

In pilot studies for future projects, we recorded spon-

taneous reactions to a series of video clips and images. Fig. 7

shows the reaction of two subjects to an amusing image

immediately following a distressing clip. The automatic codes
Fig. 6. Examples of the emotion mirror. The animated character mirrors the

facial expression of the user.
for both subjects show increasing joy and decreasing disgust,

but the baseline levels and the trajectories differ.

6.1. Person identification from expression dynamics

In another study we explored whether the sequence of

outputs from the expression recognizer could be used for

person identification. Eight subjects posed each of the six basic

emotions three times over in random order. Fig. 8 shows the

automatic codes for two different expressions, fear, which is

difficult to pose, and surprise, which is easy to pose. We show

the three trajectories for each emotion for two different

subjects. The trajectories of the outputs were idiosyncratic

for each person and could be used to recognize the identity of

the person. Using nearest neighbor classification on the

response of each of the seven emotion detectors, averaged in

time windows, was sufficient to recognize the identity of the

eight subjects in this pilot study with 100% accuracy.
7. Automated facial action coding

In order to objectively capture the richness and complexity

of facial expressions, behavioral scientists have found it

necessary to develop objective coding standards. The facial

action coding system (FACS) [10] is the most objective and

comprensive coding system in the behavioral sciences.



Fig. 8. Traces for repeated posed expressions of fear (left) and surprise (right) for two subjects. Subject 1 is in red/gray. Subject 2 is in blue/black.

Fig. 9. Fully automated facial action coding system.

Table 8

Generalization results for fully automatic recognition of 7 upper facial actions

AU AU code Agreement No. examples

Inner brow raise 1 93.5 123

Outer brow raise 2 96.3 83

Brow corrugator 4 89.1 143

Upper lid raise 5 91.9 85

Cheek raise 6 93.9 93

Lower lid tight 7 87.2 85

Nose wrinkle 9 98.7 43

Agreement is measured as the percent of images correctly classified.
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A human coder decomposes facial expressions in terms of 46

component movements. A longstanding research direction in

the Machine Perception Laboratory is to automatically

recognize facial actions (e.g. [1,2,8]. Three groups besides

ours have focused on automatic FACS recognition as a tool for

behavioral research: [23,16,26]. Systems to date still require

considerable manual input, unless infrared signals are available

for locating the eyes (e.g. [16]).

Here we apply the system presented above to the problem of

fully automated facial action coding. The machine learning

techniques presented above were repeated, where facial action

labels replaced the basic emotion labels. Face images were

detected and aligned automatically in the video frames and sent

directly to the recognition system (Fig. 9).

The system was again trained on Cohn and Kanade’s

DFAT-504 dataset which contains FACS scores by two

certified FACS coders in addition to the basic emotion labels.

Automatic eye detection [11] was employed to align the eyes in

each image. Seven support vector machines, one for each AU,

were trained to detect the presence of a given AU, regardless of

the co-occuring AU’s. Positive examples consisted of the last

(peak) frame of each sequence, and negative examples

consisted of all peak frames that did not contain the target

AU, plus 313 neutral images obtained from the first frame of

each sequence. A nonlinear radial basis function kernel was

employed. Generalization to new subjects was tested using

leave-one-out cross-validation. The results are shown in
Table 8. System outputs for full image sequences of test

subjects are shown in Fig. 10. The subjects are from DFAT-504

and trajectories of three different action units associated with

the same posed expression are shown. These are not repeated

poses of the same expression.

The system obtained a mean of 92.9% agreement with

human FACS labels for fully automatic recognition of seven

upper facial actions. These performance rates are equal to or

better than other systems tested on this dataset that employed

manual registration or initialization [16,26]. The high

performance rate obtained by our system is the result of

many years of systematic comparisons, (such as those

presented here, and also in [1,8]), investigating which image

features (representations) are most effective, which classifiers

are most effective, optimal resolution and spatial frequency,



Fig. 10. Automated FACS measurements for full image sequences. (a) Surprise expression sequences from 2 subjects scored by the human coder as containing AU’s

1, 2 and 5. Curves show automated system output for AU’s 1, 2 and 5. (b) Disgust expression sequences from 2 subjects scored by the human coder as containing

AU’s 4, 7 and 9. Curves show automated system output for AU’s 4, 7 and 9.

Fig. 11. Fully automated FACS detects action units 1 and 2 in a fleeting

spontaneous browraise displayed in an unconstrained situation. Human coders

labeled the action unit onset, apex and offset.
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feature selection techniques, and comparing flow-based to

texture-based recognition.

The approach to automatic FACS coding presented here, in

addition to being fully automated, also differs from approaches

such as [23,26], in that instead of designing special purpose

image features for each facial action, we explore general

purpose learning mechanisms for data-driven facial expression

classification. These methods merge machine learning and

biologically inspired models of human vision. These mechan-

isms can be applied to recognition of any facial action given a

training data set. The approach detects not only changes in

position of feature points, but also changes in image texture

such as those created by wrinkles, bulges, and changes in

feature shapes (Fig. 11).

8. Conclusions and future directions

We presented a systematic comparison of machine learning

methods applied to the problem of fully automatic recognition

of facial expressions, including AdaBoost, support vector

machines, and linear discriminant analysis. We reported results

on a series of experiments comparing methods for multiclass

decisions, spatial frequency ranges, feature selection methods,
and recognition engines. Best results were obtained by

selecting a subset of Gabor filters using AdaBoost and then

training Support Vector Machines on the outputs of the filters

selected by AdaBoost. The combination of Adaboost and



Fig. 12. Head pose estimation and warping to frontal views. (a) Four camera views of a subject at one instant. (b) Head pose estimate for each of four camera views.

(c) Face images warped to frontal.
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SVM’s enhanced both speed and accuracy of the system. The

generalization performance to new subjects for a 7-way forced

choice was 93.3 and 97% correct on two publicly available

datasets, the best performance reported so far on these datasets.

The outputs of the classifier contain information about

expression magnitude, and thus can be used to capture

information about expression dynamics.

The general purpose learning mechanisms presented here

for data-driven facial expression classification can be applied

to recognition of any facial expression dimension given a

training dataset. Here we presented results for both automatic

recognition of basic emotions and automatic facial action

coding.

Our results suggest that user independent, fully automatic

real time coding of facial expressions in the continuous video

stream is an achievable goal with present computer power, at

least for applications in which frontal views can be assumed.

The problem of classification of facial expressions can be

solved with high accuracy by a simple linear system, after the

images are preprocessed by a bank of Gabor filters. Linear

systems carry a small performance penalty (92.5% instead of

93.3%) but are faster for real-time applications (see Table 3).

Feature selection speeds up systems based on non-linear

SVM’s into the real-time range.

Our work also indicates that the current datasets may be

inadequate for further progress and a new generation of dataset

is greatly needed in the field. We are currently engaged in a

long-term effort to develop such datasets and help accelerate

progress in the field.

The automated facial expression measurement systems

described above aligned faces in the 2D plane. Spontaneous

behavior can contain considerable out-of-plane head rotation.

The accuracy of automated facial expression measurement

may be considerably improved by 3D alignment of faces. Also,

information about head movement dynamics is an important

component of FACS. Members of this group have developed

techniques for automatically estimating 3D pose in a

generative model [22] and for warping faces to frontal. See

Fig. 12. In the near future, this process will be integrated into

our system for recognizing expressions from video of

unconstrained interactions.

We are presently exploring applications of this system

including automatic evaluation of human-robot interaction

[19], and deployment in automatic tutoring systems [21] and
social robots. We are also exploring clinical applications,

including psychiatric diagnosis and measuring response to

treatment.

References

[1] Marian.S. Bartlett, Face image analysis by unsupervised learning, The

Kluwer International Series on Engineering and Computer Science, vol.

612, Kluwer, Boston, Mass, 2001.

[2] M.S. Bartlett, B. Braathen, G. Littlewort-Ford, J. Hershey, I. Fasel, T.

Marks, E. Smith, T.J. Sejnowski, J.R. Movellan, Automatic analysis of

spontaneous facial behavior: a final project report, Technical Report

UCSD MPLab TR 2001.08, University of California, San Diego, 2001.

[3] I. Cohen, N. Sebe, F. Cozman, M. Cirelo, T. Huang, Learning Baysian

network classifiers for facial expression recognition using both labeled

and unlabeled data, Computer Vision and Pattern Recognition (2003).

[4] N. Cristianini, J. Shawe-Taylor, Support Vector Machines, Cambridge

University Press, Cambridge, 2000.

[5] M.N. Dailey, G.W. Cottrell, C. Padgett, R. Adolphs, Empath: a neural

network that categorizes facial expressions, Journal of Cognitive

Neuroscience 14 (8) (2002).

[6] D. Datcu, L. Rothkrantz, Automatic recognition of facial expressions

using bayesian belief networks, in: Thissen, Wieringa, Pantic, Ludema

(Eds.), Proceedings of the IEEE Conference on Systems Man and

Cybernetics, The Hague, Netherlands, Oct 10–13, 2004.

[7] O. Dekel, Y. Singer, Multiclass learning by probabilistic embedding, in:

S. Becker, K. Obermayer (Eds.), Advances in Neural Information

Processing Systems, vol. 15, MIT Press, Cambridge, MA, 2003.

[8] G. Donato, M. Bartlett, J. Hager, P. Ekman, T. Sejnowski, Classifying

facial actions, IEEE Trans on Pattern Analysis and Machine Intelligence

21 (10) (1999) 974–989.

[9] P. Ekman, W. Friesen, Pictures of Facial Affect. Photographs, Available

from Human Interaction Laboratory, UCSF, HIL-0984, San Francisco,

CA 94143, 1976.

[10] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for the

Measurement of Facial Movement, Consulting Psychologists Press, Palo

Alto, CA, 1978.

[11] I.R. Fasel, B. Fortenberry, J.R. Movellan, GBoost: a generative

framework for boosting with applications to realtime eye coding.

Computer Vision and Image Understanding, in press.

[12] J. Freund, R.E. Schapire, A short introduction to boosting, Journal of

Japanese Society for Artificial Intelligence 14 (5) (1999) 771–780.

[13] J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: A

Statistical View of Boosting, 1998.

[14] S. Har-Peled, D. Roth, D. Zimak, Constraint classification for multiclass

classification and ranking, in: S. Becker, K. Obermayer (Eds.), Advances

in Neural Information Processing Systems, vol. 15, MIT Press,

Cambridge, MA, 2003.

[15] T. Kanade, J.F. Cohn, Y. Tian, Comprehensive database for facial

expression analysis, in: Proceedings of the Fourth IEEE International

Conference on Automatic Face and Gesture Recognition (FG’00)

Grenoble, France, pp. 46-53, 2000.



G. Littlewort et al. / Image and Vision Computing 24 (2006) 615–625 625
[16] A. Kapoor, Y. Qi, R.W. Picard, Fully automatic upper facial action

recognition, IEEE International Workshop on Analysis and Modeling of

Faces and Gestures, 2003.

[17] U. Kressel, Pairwise classification and support vector machines, in:

B. Scholkopf, C.J.C. Burges, A.J. Smola (Eds.), Advances in Kernel

Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1999,

pp. 255–268.
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