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ABSTRACT 
We present initial results from the application of an automated 
facial expression recognition system to spontaneous facial 
expressions of pain. In this study, 26 participants were videotaped 
under three experimental conditions: baseline, posed pain, and 
real pain. The real pain condition consisted of cold pressor pain 
induced by submerging the arm in ice water. Our goal was to 1) 
assess whether the automated measurements were consistent with 
expression measurements obtained by human experts, and 2) 
develop a classifier to automatically differentiate real from faked 
pain in a subject-independent manner from the automated 
measurements. We employed a machine learning approach in a 
two-stage system. In the first stage, a set of 20 detectors for facial 
actions from the Facial Action Coding System operated on the 
continuous video stream. This data was then passed to a second 
machine learning stage, in which a classifier was trained to detect 
the difference between expressions of real pain and fake pain. 
Naïve human subjects tested on the same videos were at chance 
for differentiating faked from real pain, obtaining only 49% 
accuracy.  The automated system was successfully able to 
differentiate faked from real pain. In an analysis of 26 subjects 
with faked pain before real pain, the system obtained 88% correct 
for subject independent discrimination of real versus fake pain on 
a 2-alternative forced choice.   Moreover, the most discriminative 
facial actions in the automated system were consistent with 
findings using human expert FACS codes.  

1. INTRODUCTION 
The computer vision field has advanced to the point that we are 
now able to begin to apply automatic facial expression recognition 
systems to important research questions in behavioral science.  
This paper is among the first applications of fully automated facial 
expression measurement to such research questions. It explores 
the application of a machine learning system for automatic facial 
expression measurement to the task of differentiating fake from 
real expressions of pain.  This application involves measurement 
of spontaneous expressions, in which the data conditions are much 
less constrained than posed expressions of basic emotions, on 
which most automated systems are developed and tested.  Ability 
to process spontaneous expressions shows that automated 
expression measurement systems can perform effectively in real 
applications.  
 

The ability to distinguish real pain from faked pain, (malingering) 
is an important issue in medicine (Fishbain, 2006).  Naïve human 
subjects are near chance for differentiating real from fake pain 
from observing facial expression (e.g. Hadjistavropoulos et al., 
1996). In the absence of direct training in facial expressions, 
clinicians are also poor at assessing pain from the face (e.g. 
Prkachin et al. 2001 and 2007; Grossman, 1991).   However a 
number of studies using the Facial Action Coding System (FACS) 
(Ekman & Friesen, 1978) have shown that information exists in 
the face for differentiating real from posed pain (e.g. Hill and 
Craig, 2002; Craig et al., 1991; Prkachin 1992).  In fact, if 
subjects receive corrective feedback, their performance improves 
substantially (Hill & Craig, 2004). Thus it appears that a signal is 
present, but that most people don’t know what to look for.  
Recent advances in automated facial expression measurement 
open up the possibility of automatically differentiating posed from 
real pain using computer vision systems (e.g. Bartlett et al., 2006; 
Littlewort et al., 2006; Cohn & Schmidt, 2004; Pantic et al., 
2006).  This paper explores the application of a system for 
automatically detecting facial actions to this problem. The goal of 
the paper is to 1) assess whether the automated measurements 
were consistent with expression measurements obtained by human 
experts, and 2) develop a classifier to automatically differentiate 
real from faked pain in a subject-independent manner from the 
automated measurements.   
In this study, 26 participants were videotaped under three 
experimental conditions: baseline, posed pain, and real pain. The 
real pain condition consisted of cold pressor pain induced by 
submerging the arm in ice water. We employed a machine 
learning approach in a two-stage system. In the first stage, the 
video was passed through a system for detecting facial actions 
from the Facial Action Coding System (Bartlett et al., 2006). This 
data was then passed to a second machine learning stage, in which 
a classifier was trained to detect the difference between 
expressions of real pain and fake pain. Naïve human subjects were 
tested on the same videos to compare their ability to differentiate 
faked from real pain. 

Section 2 describes the human subject methods and experiments.  
Section 3 describes the computer vision system employed for the 
first stage of the 2-stage approach, in which automated detectors 
were developed for 20 facial actions.  Section 4.1 analyzes the 
output of the automated facial action detectors and assesses the 
degree to which they match previous studies based on human 
coding. Section 4.2 describes the second machine learning stage, 
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in which a classifier for real versus faked pain is trained on the 
output of the 20 facial action detectors.  

The ultimate goal of this work is not the detection of malingering 
per se, but rather to demonstrate the ability of the automated 
systems to detect facial behavior that the untrained eye might fail 
to interpret, and to differentiate types of neural control of the face.  
It holds out the prospect of illuminating basic questions pertaining 
to the behavioral fingerprint of neural control systems, and thus 
opens many future lines of inquiry.   
The contribution of this paper is to show that this system for 
automated FACS can drive further analysis of behavior by the 
addition of extra computational layers. We show that the 
automated system is consistent with earlier research, and brings 
added value by providing measurement of the face when expert 
human coding is impractical, and enabling measurement of 
expression dynamics than was infeasible with human coding due 
to the time required. We hope that the availability of such tools 
will lead to new experimental designs. 
 

1.1 The Facial Action Coding System 
The facial action coding system (FACS) (Ekman and Friesen, 
1978) is arguably the most widely used method for coding facial 
expressions in the behavioral sciences. The system describes 
facial expressions in terms of 46 component movements, which 
roughly correspond to the individual facial muscle movements. 
An example is shown in Figure 1. FACS provides an objective 
and comprehensive way to analyze expressions into elementary 
components, analogous to decomposition of speech into 
phonemes. Because it is comprehensive, FACS has proven useful 
for discovering facial movements that are indicative of cognitive 
and affective states. See Ekman and Rosenberg (2005) for a 
review of facial expression studies using FACS. The primary 
limitation to the widespread use of FACS is the time required to 
code. FACS was developed for coding by hand, using human 
experts.  It takes over 100 hours of training to become proficient 
in FACS, and it takes approximately 2 hours for human experts to 
code each minute of video. The authors have been developing 
methods for fully automating the facial action coding system (e.g. 
Donato et al., 1999; Bartlett et al., 2006). In this paper we apply a 
computer vision system trained to automatically detect FACS to 
the problem of differentiating posed from real expressions of pain.   
 

 
Figure 1. Example facial action decomposition from the facial 
action coding system.  A prototypical expression of fear is 
decomposed into 7 component movements. Letters indicate 
intensity.  A fear brow (1+2+4) is illustrated here.  
 

In previous studies using manual FACS coding by human experts, 
at least 12 facial actions showed significant relationships with 
pain across multiple studies and pain modalities. Of these, the 
ones specifically associated with cold pressor pain were 4, 6, 7, 9, 
10, 12, 25, 26 (Craig & Patrick, 1985; Prkachin, 1992). See Table 
1 and Figure 2 for names and examples of these AU’s.   A 
previous study compared faked to real pain, but in a different pain 
modality (lower back pain).  This study found that when faking, 
subjects tended to display the following AU’s: 4, 6, 7, 10, 12, 25. 
When faked pain expressions were compared to real pain 
expressions, the faked pain expressions contained significantly 
more brow lower (AU 4), cheek raise (AU 6), and lip corner pull 
(AU 12) (Craig, Hyde & Patrick, 1991).  These studies also 
reported substantial individual differences in the expressions of 
both real pain and faked pain, making automated detection of 
faked pain a challenging problem.  
 

1.2 Spontaneous Expressions 
The machine learning system presented here was trained on 
spontaneous facial expressions. The importance of using 
spontaneous behavior for developing and testing computer vision 
systems becomes apparent when we examine the neurological 
substrate for facial expression. There are two distinct neural 
pathways that mediate facial expressions, each one originating in 
a different area of the brain. Volitional facial movements originate 
in the cortical motor strip, whereas it has been suggested that 
spontaneous facial expressions originate in the subcortical areas of 
the brain (see Rinn, 1984, for a review). These two pathways have 
different patterns of innervation on the face, with the cortical 
system tending to give stronger innervation to certain muscles 
primarily in the lower face, while the subcortical system tends to 
more strongly innervate certain muscles primarily in the upper 
face (e.g. Morecraft et al., 2001).  
The facial expressions mediated by these two pathways have 
differences both in which facial muscles are moved and in 
their dynamics (Ekman, 2001; Ekman & Rosenberg, 2005). 
Subcortically initiated facial expressions (the spontaneous group) 
are characterized by synchronized, smooth, symmetrical, 
consistent, and reflex-like facial muscle movements whereas 
cortically initiated facial expressions (posed expressions) are 
subject to volitional real-time control and tend to be less smooth, 
with more variable dynamics (Rinn, 1984; Frank, Ekman, & 
Friesen, 1993; Schmidt, Cohn & Tian, 2003; Cohn & Schmidt, 
2004).   Given the two different neural pathways for facial 
expressions, it is reasonable to expect to find differences between 
genuine and posed expressions of pain.  Moreover, it is crucial 
that the computer vision model for detecting genuine pain is based 
on machine learning of spontaneous examples of real pain 
expressions.  
 

2. HUMAN SUBJECT METHODS 
Video data was collected of 26 human subjects during real pain, 
faked pain, and baseline conditions.  Human subjects were 
university students consisting of 6 men and 20 women.  The pain 
condition consisted of cold pressor pain induced by immersing the 
arm in cold water at 30 Celsius.  For the baseline and faked pain 
conditions, the water was 200 Celsius.  Subjects were instructed to 
immerse their forearm into the water up to the elbow, and hold it 
there for 60 seconds in each of the three conditions.  The order of 
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the conditions was baseline, faked pain, and then real pain.  For 
the faked pain condition, subjects were asked to manipulate their 
facial expressions so that an “expert would be convinced they 
were in actual pain.” Participants facial expressions were recorded 
using a digital video camera during each condition.  

A second subject group underwent the conditions in the 
counterbalanced order, with real pain followed by faked pain.  
This ordering involves immediate memory of the pain just felt, 
which is a fundamentally different task from imagining unknown 
pain.  The present paper therefore analyzes only the first subject 
group. The second group will be analyzed separately in a future 
paper, and compared to the first group.  

After the videos were collected, a set of 170 naïve observers were 
shown the videos and asked to guess whether each video 
contained faked or real pain.  Subjects were undergraduates with 
no explicit training in facial expression measurement. They were 
primarily Psychology majors at U. Toronto. Mean accuracy of 
naïve human subjects for discriminating fake from real pain in 
these videos was near chance at 49.1% (sd = 13.7).   These 
observers had no specific training in facial expression and were 
not clinicians.  One might suppose that clinicians would be more 
accurate. However previous studies suggest that clinicians 
judgments of pain from the face are similarly unreliable (e.g. 
Prkachin et al 2007, Grossman, 1991).   Facial signals to 
differentiate real from faked pain do appear to exist however (Hill 
& Craig, 2002, Craig et al., 1991; Prkachin 1992; Hill & Craig, 
2004).   A system based on machine learning from examples of 
real and faked pain expressions could pick up these signals. This 
paper investigated whether an automated system could outperform 
the naïve human subjects on the same set of videos.  
 

            
a.   b. 
Figure 2. Sample behavior: a. faked pain b. real pain  
 

3. AUTOMATED FACIAL ACTION 
DETECTION 
The first stage of the computer vision analysis was to employ a 
system for fully automated facial action coding developed 
previously by the authors (Bartlett et. Al, 2006; Littlewort et al., 
2006).  In this paper we evaluate this system on the task of 
measuring facial expressions of pain, and then extend it by 
developing a second stage classifier for real versus faked pain that 
operates on the facial action output channels.  Here we describe 
the facial action detection system employed in Stage One. It is a 
user independent fully automatic system for real time recognition 
of facial actions from the Facial Action Coding System (FACS). 
The system automatically detects frontal faces in the video stream 

and codes each frame with respect to 20 Action units. It is a 
machine learning system on image-based features. In previous 
work, we conducted empirical comparisons of image features, 
including Gabors, independent components, and flow-based 
features (e.g. Donato et al., 1999), classifiers such as AdaBoost, 
support vector machines, and linear discriminant analysis, as well 
as feature selection techniques (Littlewort et al., 2006). An 
overview of the system is shown in Figure 3.  
 

 
Figure 3.  Overview of the automated facial action recognition 
system.  
 

3.1 Real Time Face and Feature Detection 
The system employs a real-time face detection system that uses 
boosting techniques in a generative framework (Fasel et al.) and 
extends work by Viola and Jones (2001).  Enhancements to Viola 
and Jones include employing Gentleboost instead of AdaBoost, 
smart feature search, and a novel cascade training procedure, 
combined in a generative framework. Source code for the face 
detector is freely available at http://kolmogorov.sourceforge.net. 
Accuracy on the CMU-MIT dataset, a standard public data set for 
benchmarking frontal face detection systems (Schneiderman & 
Kanade, 1998), is 90% detections and 1/million false alarms, 
which is state-of-the-art accuracy. The CMU test set has 
unconstrained lighting and background. With controlled lighting 
and background, such as the facial expression data employed here, 
detection accuracy is much higher. All faces in the training 
datasets, for example, were successfully detected. The system 
presently operates at 24 frames/second on a 3 GHz Pentium IV for 
320x240 images. The automatically located faces were rescaled to 
96x96 pixels. The typical distance between the centers of the eyes 
was roughly 48 pixels. Previously, automatic eye detection (Fasel 
et al., 2005) was employed to align the eyes in each image. The 
current system aligns the face based on 4 points- the centers of the 
eyes, nose and mouth. For this study only, we applied temporal 
smoothing to these feature positions and linear compensation for 
motion-related alignment anomalies. There is a choice of 
Procrustes alignment or unconstrained least square alignment. We 
used procrustes for this experiment. The images were then passed 
through a bank of Gabor filters 8 orientations and 9 spatial 
frequencies (2 to 32 pixels per cycle at 1/2 octave steps). Output 
magnitudes were then passed to the action unit classifiers.  
 

3.2 Facial Action Classifiers 
The training data for the facial action classifiers came from four 
data sets, not including the pain data - three posed datasets and 
one dataset of spontaneous expressions. The facial expressions in 
each dataset were FACS coded by certified FACS coders. The 
first posed datasets was the Cohn-Kanade DFAT-504 dataset 
(Kanade, Cohn & Tian, 2000). This dataset consists of 100 
university students who were instructed by an experimenter to 
perform a series of 23 facial displays, including expressions of 
seven basic emotions. The second posed dataset consisted of 
directed facial actions from 24 subjects collected by Ekman and 
Hager. Subjects were instructed by a FACS expert on the display 
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of individual facial actions and action combinations, and they 
practiced with a mirror. The resulting video was verified for AU 
content by two certified FACS coders.  The third posed dataset 
consisted of a subset of 50 videos from 20 subjects from the MMI 
database (Pantic et al., 2005). The spontaneous expression dataset 
consisted of the FACS-101 dataset collected by Mark Frank 
(Bartlett et. Al. 2006). 33 subjects underwent an interview about 
political opinions on which they felt strongly. Two minutes of 
each subject were FACS coded. The total training set consisted of 
5500 examples, 2500 from posed databases and 3000 from the 
spontaneous set. 
 
Linear Support Vector Machines were trained for each of 20 facial 
actions. Separate binary classifiers, one for each action, were 
trained to detect the presence of the action in a one versus all 
manner.  Positive examples consisted of the apex frame for the 
target AU. Negative examples consisted of all apex frames that 
did not contain the target AU plus neutral images obtained from 
the first frame of each sequence.   Eighteen of the detectors were 
for individual action units, and two of the detectors were for 
specific brow region combinations: fear brow (1+2+4) and 
distress brow (1 alone or 1+4).   All other detectors were trained 
to detect the presence of the target action regardless of co-
occurring actions.   A list is shown in Table 1.  
 
The output of the system was a real valued number indicating the 
distance to the separating hyperplane for each classifier.  Previous 
work showed that the distance to the separating hyperplane (the 
margin) contained information about action unit intensity (e.g. 
Bartlett et al., 2006).  
 
In this paper, area under the ROC (A’) is used to assess 
performance rather than overall percent correct, since percent 
correct can be an unreliable measure of performance, as it 
depends on the proportion of targets to non-targets, and also on 
the decision threshold. Similarly, other statistics such as true 
positive and false positive rates depend on decision threshold, 
which can complicate comparisons across systems. A’ is a  
measure derived from signal detection theory and characterizes 
the discriminative capacity of the signal, independent of decision 
threshold. The ROC curve is obtained by plotting true positives 
against false positives as the decision threshold shifts from 0 to 
100% detections.  The area under the ROC (A’) ranges from 0.5 
(chance) to 1 (perfect discrimination). A’ can also be interpreted 
in terms of percent correct. A’ is equivalent to the theoretical 
maximum percent correct achievable with the information 
provided by the system when using a 2-Alternative Forced Choice 
testing paradigm. 
 
Table 1. AU detection performance on posed and spontaneous 
facial actions.  Values are Area under the roc (A’) for 
generalization to novel subjects.  
 

AU Name  Posed Spont 
1   Inner brow raise .90 .88 
2   Outer brow raise .94 .81 
4           Brow Lower   .98 .73 
5 Upper Lid Raise .98 .80 
6 Cheek Raise  .85 .89 
7 Lids tight  .96 .77 
9 Nose wrinkle  .99 .88 
10 Upper lip raise  .98 .78 
12 Lip corner pull  .97 .92 
14 Dimpler  .90 .77 

15 Lip corner Depress .80 .83 
17 Chin Raise  .92 .80 
18 Lip Pucker  .87 .70 
20 Lip stretch  .98 .60 
23 Lip tighten  .89 .63 
24 Lip press  .84 .80 
25 Lips part  .98 .71 
26 Jaw drop  .98 .71 
1,1+4 Distress brow  .94 .70 
1+2+4 Fear brow  .95 .63 
Mean:     .93 .77 

 
Table 1 shows performance for detecting facial actions in posed 
and spontaneous facial actions.  Generalization to novel subjects 
was tested using 3-fold cross-validation on the images in the  
FACS training set (not the pain video).  Performance was 
separated into the posed set, which was 2,500 images, and a 
spontaneous  set, which was 1100 images from the FACS-101 
database which includes speech. The performance on the 
spontaneous data is lower than posed data because of less 
restrictive conditions on head position, lighting, movement and 
the lower intensity of spontaneous expressions. Despite this 
performance loss, particularly in the very important brow 
lowering AU, task labels based on sixty seconds worth of this 
system output could be learned successfully. In addition to FACS 
accuracy, the decision is implicitly influenced by combinations 
and temporal effects.  
 
4. AUTOMATED MEASUREMENT OF 
REAL AND FAKE PAIN EXPRESSIONS 
Applying this system to the pain video data produced a 20 channel 
output stream, consisting of one real value for each learned AU, 
for each frame of the video. We first examine the output of the 
automated facial action detectors. We assess which AU outputs 
contained information about genuine pain expressions, faked pain 
expressions, and show differences between genuine versus faked 
pain.  The results are compared to studies that employed expert 
human coding.  Section 4.2 goes on to develop a second-stage 
classifier to automatically discriminate real from faked pain from 
the 20-channel output stream.  
 
 

4.1 Characterizing the Difference Between 
Real and Fake Pain Expressions 
We first examined which facial action detectors were elevated in 
real pain compared to the baseline condition.  Z-scores for each 
subject and each AU detector were computed as Z=(x-µ)/σ, where 
(µ,σ) are the mean and variance for the output of frames 100-1100 
in the baseline condition (warm water, no faked expressions).  The 
mean difference in Z-score between the baseline and pain 
conditions was computed across the 26 subjects. Table 2 shows 
the action detectors with the largest difference in Z-scores.   We 
observed that the actions with the largest Z-scores for genuine 
pain were Mouth opening and jaw drop (25 and 26), lip corner 
puller by zygomatic (12), nose wrinkle (9), and to a lesser extent, 
lip raise (10) and cheek raise (6).  These facial actions have been 
previously associated with cold pressor pain (e.g. Prkachin, 1992; 
Craig & Patrick 1985).  
The Z-score analysis was next repeated for faked versus baseline.  
We observed that in faked pain there was relatively more facial 
activity than in real pain. The facial action outputs with the 
highest z-scores for faked pain relative to baseline were brow 
lower (4), distress brow (1 or 1+4), inner brow raise (1), mouth 
open and jaw drop (25 and 26), cheek raise (6), lip raise (10), fear 
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brow (1+2+4), nose wrinkle (9), mouth stretch (20), and lower lid 
raise (7).  
Differences between real and faked pain were examined by 
computing the difference of the two z-scores. Differences were 
observed primarily in the outputs of action unit 4 (brow lower), as 
well as distress brow (1 or 1+4) and inner brow raise (1 in any 
combination).  
 
Table 2.  Z-score differences of the three pain conditions, 
averaged across subjects. FB: Fear brow 1+2+4. DB: Distress 
brow (1,1+4).  
 
A. Real Pain vs baseline: 
Action Unit  25       12      9      26      10       6   

Z-score   1.4      1.4    1.3    1.2    0.9    0.9 
B. Faked Pain vs Baseline:  
Action Unit    4    DB   1    25   12    6    26   10   FB    9    20     7 
Z-score          2.7  2.1  1.7  1.5  1.4  1.4  1.3  1.3  1.2   1.1  1.0   0.9  
C. Real Pain vs Faked Pain:  
Action Unit  4      DB       1   
Z-score difference   1.8 1.7       1.0      
 
Table 3. Individual subject differences between faked and 
genuine pain.   Differences greater than 2 standard deviations 
are shown. F>P: Number of subjects in which the output for 
the given AU was greater in faked than genuine pain.  P>F: 
Number of subjects for which the output was greater in 
genuine than faked pain. FB: Fear brow 1+2+4. DB: Distress 
brow (1,1+4).  
 
AU     1  2  4  5  6  7  9 10 12 14 15 17 18 20 23 24 25 26 FB DB 
F>P    6  4  9  1  7  4  3  6  5   3   5   5   1   4   3   4   4   4   6   5  
P>F    3  3  0  0  4  0  4  4  4   2   3   1   3   1   1   1   2   4   2   0 
 
Individual subject differences between faked and real pain are 
shown in Table 3.  Difference-of-Z-scores between the genuine 
and faked pain conditions were computed for each subject and 
each AU.  There was considerable variation among subjects in the 
difference between their faked and real pain expressions.  
However the most consistent finding is that 9 of the 26 subjects 
showed significantly more brow lowering activity (AU4) during 
the faked pain condition, whereas none of the subjects showed 
significantly more AU4 activity during the real pain condition.  
Also 7 subjects showed more cheek raise (AU6), and 6 subjects 
showed more inner brow raise (AU1), and the fear brow 
combination (1+2+4).  The next most common differences were to 
show more 12, 15, 17, and distress brow (1 alone or 1+4) during 
faked pain.  
Paired t-tests were conducted for each AU to assess whether it 
was a reliable indicator of genuine versus faked pain in a within-
subjects design.  Of the 20 actions tested,  the difference was 
statistically significant for  three actions. It was highly significant 
for AU 4 (p < .001), and marginally significant for AU 7 and 
distress brow (p < .05).  
In order to characterize action unit combinations that relate to the 
difference between fake and real pain expressions, principal 
component analysis was conducted on the difference-of-Z-scores.   
The first eigenvector had the largest loading on distress brow and 
inner brow raise (AU 1).  The second eigenvector had the largest 
loading on lip corner puller (12) and cheek raise (6) and was 
lower for fake pain expressions.  The third eigenvector had the 
largest loading on brow lower (AU 4).  Thus when analyzed 
singly, the action unit channel with the most information for 
discriminating fake from real pain was brow lower (AU 4).  
However when correlations were assessed through PCA, the 
largest variance was attributed to two combinations, and AU 4 

accounted for the third most variance.    
 
4.1.1 Comparison with previous studies that 
employed human expert coding 
Overall, the outputs of the automated system showed similar 
patterns to previous studies of real and faked pain using manual 
FACS coding by human experts. Exaggerated activity of the brow 
lower (AU 4) during faked pain is consistent with previous studies 
in which the real pain condition was exacerbated lower back pain   
(Craig et al. 1991, Hill & Craig, 2002).  Another study performed 
a FACS analysis of fake and real pain expressions with cold 
pressor pain, but with children ages 8-12 (LaRochette et al., 
2006).   This study observed significant elevation in the following 
AU’s for fake pain relative to baseline: 1 4 6 7 10 12 20 23 25 26.  
This closely matches the AU’s with the highest z-scores in the 
automated system output of the present study (Table 2B). 
LaRochette et al. did not measure AU 9 or the brow combinations.  
When faked pain expressions were compared with real cold 
pressor pain in children,  LaRochette et al found significant 
differences in AU’s 1 4 7 10.   Again the findings of the present 
study using the automated system are similar, as the AU channels 
with the highest z-scores were 1, 4, and 1+4 (Table 2C), and the t-
tests were significant for 4, 1+4 and 7.  
 
4.1.2 Comparison with human expert coding of a 
subset of the video data 
In order to further assess the validity of the automated system 
findings, we obtained FACS codes for a portion of the video data 
employed in this study.  FACS codes were obtained by an expert 
coder certified in the Facial Action Coding System. For each 
subject, the last 500 frames of the fake pain and real pain 
conditions were FACS coded (about 15 seconds each).  It took 60 
man hours to collect the human codes, over the course of more 
than 3 months, since human coders can only code up to 2 hours 
per day before having negative repercussions in accuracy and 
coder burn-out.  
 
The sum of the frames containing each action unit were collected 
for each subject condition, as well as a weighted sum, multiplied 
by the intensity of the action on a 1-5 scale.  To investigate 
whether any action units successfully differentiated real from 
faked pain, paired t-tests were computed on each individual action 
unit.  (Tests on specific brow region combinations 1+2+4 and 
1,1+4 have not yet been conducted.)   The one action unit that 
significantly differentiated the two conditions was AU 4, brow 
lower, (p<.01) for both the sum and weighted sum measures. This 
finding is consistent with the analysis of the automated system, 
which also found action unit 4 most discriminative.   
 
The above analysis examined the outputs of the automated facial 
action detectors and compared them to studies that employed 
expert human coding. We next turned to the problem of 
automatically discriminating genuine from faked pain expressions 
from the facial action output stream.  
 

4.2 Automated Classification of Real vs Faked 
Pain 
This section describes the second machine learning stage, in 
which a classifier was trained to discriminate genuine from faked 
pain from the output of the facial action detectors.  The task was 
to perform subject-independent classification. If the task were to 
simply detect the presence of a red-flag set of facial actions, then 
differentiating fake from real pain expressions would be relatively 
simple. However, it should be noted that subjects display actions 
such as AU 4, for example, in both real and fake pain, and the 
distinction is in the magnitude and duration of AU 4.   Also, there 
is inter-subject variation in expressions of both real and fake pain, 
there may be combinatorial differences in the sets of actions 
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displayed during real and fake pain, and the subjects may cluster. 
We therefore applied machine learning to the task of 
discriminating real from faked pain expressions.  
 
A second-layer classifier was trained to discriminate genuine pain 
from faked pain based on the 20-channel output stream. The 
system was trained using cross-validation on the 26 subject videos 
described in Section 2. The input to this second stage consisted of 
the 20 facial action detector outputs from the full minute of video 
in each condition. In the cross-validation approach, the system 
was trained and tested 26 times,  each time using data from 25 
subjects for parameter estimation and reserving a different subject 
for testing.  This provided an estimate of subject-independent 
detection performance. 
 
Prior to learning, the system performed an automatic reliability 
estimate of the face alignment based on the smoothness of the eye 
positions. Abrupt shifts of 2 to 5 pixels tend to occur during 
eyeblinks. (A more recent version of the eye detector corrects this 
issue.) Those frames with abrupt shifts of 2 or more pixels in the 
returned eye positions were automatically detected and the feature 
positions were recomputed by interpolating from neighboring 
frames. This eye position filter had a relatively small effect on 
performance. The analysis of Table 2 was repeated under this 
criterion, and the Z-scores improved by about 0.1.  
 
The first approach we examined was to employ input features that 
consisted of window-based statistics. The 60 second video from 
each condition was broken up into 6 overlapping segments of 500 
frames, the windows.  For each segment, the following 5 statistics 
were measured for each of the 20 AU’s: median, maximum, 
range, first to third quartile difference, 90 to 100 percentile 
difference. Thus the input to the classifier for each segment 
contained 100 dimensions.  Each cross-validation trial contained 
300 training samples (25 subjects x 2 conditions x 6 segments).  
 
For this second-layer classification step, we first explored SVM’s, 
Adaboost, and linear discriminant analysis.  Nonlinear SVM’s 
with radial basis function kernels gave the best performance. 
Linear classifiers may be inadequate to deal with the 
combinations from different behavioral clusters for the same task.  
 
A nonlinear SVM trained to discriminate posed from real facial 
expressions of pain obtained an area under the ROC of .72 for 
generalization to novel subjects. This was significantly higher 
than performance of naïve human subjects, who obtained a mean 
accuracy of 49% correct for discriminating faked from real pain 
on the same set of videos.  
 
Our later approach was based on statistics of integrated ‘events’. 
We applied temporal filters at 8 different fundamental frequencies 
to the AU output stream. Whenever these filter outputs were 
continuously greater than zero for a particular AU, we integrated 
the intensity into one ‘event’. The histograms of these integrated 
intensities were used as a representation to train a Gaussian SVM. 
The percent correct 2-alternative forced choice of fake versus real 
pain on new subjects was 88 percent.  
 
This Integrated Event representation, shown in figure 3, contains 
useful dynamic information allowing more accurate behavioral 
analysis. This suggests that this decision task depends not only on 
which subset of AU’s  are present at which intensity, but also on 
the duration and number of AU events.  More detailed analysis of 
the dynamics of the action units  is currently underway.  
 

 
 
Figure 3. Example of Integrated Event Representation, for 
one subject, showing AU 4 for two of the 8 frequencies used. 
 
 

5. DISCUSSION 
 

The field of automatic facial expression analysis has advanced to  
the point that we can begin to apply it to address research 
questions in behavioral science. Here we describe a pioneering 
effort to apply fully automated facial action coding to the problem 
of differentiating fake from real expressions of pain.  While naïve 
human subjects were only at 49% accuracy for distinguishing fake 
from real pain, the automated system obtained 88% correct on a 2-
alternative forced choice.  Moreover, the pattern of results in 
terms of which facial actions may be involved in real pain, fake 
pain, and differentiating real from fake pain is similar to previous 
findings in the psychology literature using manual FACS coding.  
 
Here we applied machine learning on a 20-channel output stream 
of facial action detectors.  The machine learning was applied to 
samples of spontaneous expressions during the subject state in 
question.  Here the state in question was fake versus real pain.  
The same approach can be applied to learn about other subject 
states, given a set of spontaneous expression samples. For 
example, we recently developed a related system to detect driver 
drowsiness from facial expression (Vural et al., 2007).  
 
While the accuracy of individual facial action detectors is still 
below that of human experts, automated systems can be applied to 
large quantities of video data.  Statistical pattern recognition on 
this large quantity of data can reveal emergent behavioral patterns 
that previously would have required hundreds of coding hours by 
human experts, and would be unattainable by the non-expert. 
Moreover, automated facial expression analysis will enable 
investigations into facial expression dynamics that were 
previously intractable by human coding because of the time 
required to code intensity changes.  Future work in automatic 
discrimination of fake and real pain will include investigations 
into facial expression dynamics.  
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