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Abstract

Computer animated agents and robots bring a social dimension to hu-
man computer interaction and force us to think in new ways about how
computers could be used in daily life. Face to face communication is
a real-time process operating at a time scale of less than a second. In
this paper we present progress on a perceptual primitive to automatically
detect frontal faces in the video stream and code them with respect to 7
dimensions in real time: neutral, anger, disgust, fear, joy, sadness, sur-
prise. The face finder employs a cascade of feature detectors trained with
boosting techniques [13, 2]. The expression recognizer employs a combi-
nation of AdaBoost and SVM’s. The generalization performance to new
subjects for a 7-way forced choice was over 90% correct on two publicly
available datasets. The outputs of the classifier change smoothly as a
function of time, providing a potentially valuable representation to code
facial expression dynamics in a fully automatic and unobtrusive manner.
The system was deployed and evaluated for measuring spontaneous fa-
cial expressions in the field in an application for automatic assessment of
human-robot interaction.

1 Introduction

Computer animated agents and robots bring a social dimension to human computer inter-
action and force us to think in new ways about how computers could be used in daily life.
Face to face communication is a real-time process operating at a time scale of less than
a second. Thus fulfilling the idea of machines that interact face to face with us requires
development of robust real-time perceptive primitives. In this paper we present first steps
towards the development of one such primitive: a system that automatically finds faces
in the visual video stream and codes facial expression dynamics in real time. The sys-
tem automatically detects frontal faces and codes them with respect to 7 dimensions: Joy,
sadness, surprise, anger, disgust, fear, and neutral. Speed and accuracy are enhanced by
combining feature selection based on AdaBoost with feature integration based on support
vector machines. We host an online demo of the system at http://mplab.ucsd.edu.

The system was trained and tested on two publicly avaliable datasets of facial expressions
collected by experimental psychologists expert in facial behavior. In addition, we deployed



and evaluated the system in an application for recognizing spontaneous facial expressions
from continuous video in the field. We assess the system as a method for automatic mea-
surement of human-robot interaction.

2 Face detection

We developed a real-time face-detection system based on [13], capable of detection and
false positive rates equivalent to the best published results [11, 12, 10, 13]. The system
consists of a cascade of classifiers trained by boosting techniques. Each classifier employs
integral image filters reminiscent of Haar Basis functions, which can be computed very fast
at any location and scale in constant time (see Figure 1). In a 24 × 24 pixel window, there
are over 160,000 possible filters of this type. For each stage in the cascade, a subset of
features are chosen using a feature selection procedure based on AdaBoost [3].

We enhance the approach in [13] in the following ways: (1) Once a feature is selected by
boosting, we refine the selection by finding the best performing single-feature classifier
from a new set of filters generated by shifting and scaling the chosen filter by two pixels
in each direction, as well as composite filters made by reflecting each shifted and scaled
feature horizontally about the center and superimposing it on the original. This can be
thought of as a single generation genetic algorithm, and is much faster than exhaustively
searching for the best classifier among all 160,000 possible filters and their reflection-based
cousins.

(2) While [13] use AdaBoost in their feature selection algorithm, which requires binary
classifiers, we employed Gentleboost, described in [4], which uses real valued features.
Figure 2 shows the first two filters chosen by the system along with the real valued output
of the weak learners (or tuning curves) built on those filters. Note the bimodal distribution
of filter 2.

(3) We have also developed a training procedure so that after each single feature, the system
can decide whether to test another feature or to make a decision. This system retains
information about the continuous outputs of each feature detector rather than converting
to binary decisions at each stage of the cascade. Preliminary results show potential for
dramatic improvements in speed with no loss of accuracy over the current system.

The face detector was trained on 5000 faces and millions of non-face patches from about
8000 images collected from the web by Compaq Research Laboratories. Accuracy on the
CMU-MIT dataset (a standard, public data set for benchmarking frontal face detection
systems) is comparable to [13]. Because the strong classifiers early in the sequence need
very few features to achieve good performance (the first stage can reject 60% of the non-
faces using only 2 features, using only 20 simple operations, or about 60 microprocessor
instructions), the average number of features that need to be evaluated for each window
is very small, making the overall system very fast. We made the source code for the face
detector freely available at http://www.sourceforge.net/projects/kolmogorov.

3 Facial expression classification
3.1 Data set

The facial expression system was trained and tested on Cohn and Kanade’s DFAT-504
dataset [6]. This dataset consists of 100 university students ranging in age from 18 to 30
years. 65% were female, 15% were African-American, and 3% were Asian or Latino.
Videos were recoded in analog S-video using a camera located directly in front of the sub-
ject. Subjects were instructed by an experimenter to perform a series of 23 facial expres-
sions. Subjects began and ended each display with a neutral face. Before performing each
display, an experimenter described and modeled the desired display. Image sequences from
neutral to target display were digitized into 640 by 480 pixel arrays with 8-bit precision for
grayscale values.



a. b. c. d.

Figure 1: Integral image filters (after Viola & Jones, 2001 [13]). a. The value of the pixel
at (x, y) is the sum of all the pixels above and to the left. b. The sum of the pixels within
rectangle D can be computed as 4 + 1 − (2 + 3). (c) Each feature is computed by taking
the difference of the sums of the pixels in the white boxes and grey boxes. Features include
those shown in (c), as in [13], plus (d) the same features superimposed on their reflection
about the Y axis.

a. b. c. d.

Figure 2: The first two features (a,c) and their respective tuning curves (b,d). Each feature
is shown over the average face. The first tuning curve shows that a dark horizontal region
over a bright horizontal region in the center of the window is evidence for a face, and for
non-face otherwise. The output of the second filter is bimodal. Both a strong positive and
a strong negative output is evidence for a face, while output closer to zero is evidence for
non-face.

For our study, we selected 313 sequences from the dataset. The only selection criterion
was that a sequence be labeled as one of the 6 basic emotions. The sequences came from
90 subjects, with 1 to 6 emotions per subject. The first and last frames (neutral and peak)
were used as training images and for testing generalization to new subjects, for a total of
626 examples. The trained classifiers were later applied to the entire sequence.

All faces in this dataset were successfully detected. The automatically located faces were
rescaled to 48x48 pixels.The typical distance between the centers of the eyes was roughly
24 pixels. No further registration was performed, i.e. no explicit detection and alignment
of internal facial features was performed. The recognition system presented here performs
well without that step, providing a considerable savings in processing time. The images
were converted into a Gabor magnitude representation, using a bank of Gabor filters at 8
orientations and 5 spatial frequencies (4:16 pixels per cycle at 1/2 octave steps) [7].

4 SVM’s and AdaBoost

SVM performance was compared to AdaBoost for emotion classification. The system per-
formed a 7-way forced choice between the following emotion categories: Happiness, sad-
ness, surprise, disgust, fear, anger, neutral. The classification was performed in two stages.
First, seven binary classifiers were trained to discriminate each emotion from everything
else. The emotion category decision was then implemented by choosing the classifier with
the maximum output for the test example.



Support vector machines (SVM’s) are well suited to this task because the high dimen-
sionality of the Gabor representation does not affect training time for kernel classifiers.
Linear, polynomial, and RBF kernels with Laplacian, and Gaussian basis functions were
explored. Linear and RBF kernels employing a unit-width Gaussian performed best, and
are presented here. Generalization to novel subjects was tested using leave-one-subject-out
cross-validation. Results are presented in Table 1.

The features employed for the AdaBoost emotion classifier were the individual Gabor fil-
ters. There were 48x48x40 = 92160 possible features. A subset of these filters was chosen
using AdaBoost. On each training round, the threshold and scale parameter of each filter
was optimized and the feature that provided best performance on the boosted distribution
was chosen.

During AdaBoost, training for each emotion classifier continued until the distributions for
the positive and negative samples were separated by a gap proportional to the widths of
the two distributions. The total number of filters selected using this procedure was 538 for
48x48 images with 5 Gabor frequencies.

Results are shown in Table 1. The generalization performance, 87.2%, was comparable to
SVM performance. AdaBoost and SVM performances did not differ significantly on any
conditions tested. AdaBoost was substantially faster, as shown in Table 2. Here, the system
calculated the output of Gabor filters less efficiently, as the convolutions were done in pixel
space rather than Fourier space, but the use of 200 times fewer Gabor filters nevertheless
resulted in a substantial speed benefit.

a.
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Wavelength in pixels

Figure 3: a. Gabors selected by AdaBoost for each expression. White dots indicate loca-
tions of all selected Gabors. Below each expression is a linear combination of the real part
of the first 5 AdaBoost features selected for that expression. Faces shown are a mean of 10
individuals. b. Wavelength distribution of features selected by AdaBoost.

5 AdaSVM’s

AdaBoost provides an added value of choosing which features are most informative to test
at each step in the cascade. Figure 3a illustrates the first 5 Gabor features chosen for each
emotion. The chosen features show no preference for direction, but the highest frequencies
are chosen more often. Figure 3b shows the number of chosen features at each of the 5
wavelengths used.

We tried an approach in which the Gabor Features chosen by AdaBoost were used as a
reduced representation for training SVM’s, called AdaSVM’s in abbreviation of Adaptive
Boosting Selected Feature Representations in Support Vector Machines. AdaSVM’s out-



performed SVM’s by 2.7 percent points, an improvement that was marginally significant
(z=1.55, p=0.06).

Examination of the frequency distribution of the Gabor filter selected by AdaBoost sug-
gested that a wider range of spatial frequencies, particularly in the high spatial frequencies,
could potentially improve performance. Indeed, by increasing from 5 to 9 spatial frequen-
cies (2:32 pixels per cycle at 0.5 octave steps), performance of the AdaSVM improved to
93.3% correct. (See Table 1.) At this spatial frequency range, the performance advantage
of AdaSVM’s was greater. AdaSVM’s outperformed both AdaBoost (z=2.1, p=.02) and
SVM’s (z=2.6, p<.01).

Performance of the system was also evaluated on a second publicly available dataset, Pic-
tures of Facial Affect[1]. We obtained 97% accuracy for generalization to novel subjects,
using the AdaSVM combined classifiers. This is about 10 percentage points higher than
the best previously reported results on this dataset (e.g. [9, 8]).

An emergent property was that the outputs of the classifier change smoothly as a function
of time, providing a potentially valuable representation to code facial expression dynamics
in a fully automatic and unobtrusive manner. (See Figure 5.) In the next section, we apply
this system to assessing spontaneous facial expressions in the field.

ω kernel AdaBoost SVM AdaSVM

4:16 Linear 87.2 86.2 88.8
4:16 RBF 88.0 90.7
2:32 Linear 90.1 88.0 93.3
2:32 RBF 89.1 93.3

Table 1: Generalization performance of AdaBoost,SVM’s and AdaSVM’s. ω: Gabor wave-
length range, sampled at 0.5 octave intervals.

SVM AdaBoost AdaSVM
Lin RBF Lin RBF

Time t t 90t 0.01t 0.01t 0.0125t
Time t′ t 90t 0.16t 0.16t 0.2t

Memory m 90m 3m 3m 3.3m

Table 2: Processing time and memory comparison. Time t′ includes the extra time to
calculate the outputs of the 538 Gabors in pixel space for AdaBoost and AdaSVM, rather
than the full FFT employed by the SVM’s. This table is for 48x48 pixels and 5 spatial
frequencies.

6 Deployment and evaluation: Automatic evaluation of human-robot
interaction

We conducted a pilot study at the Intelligent Robotics and Communication laboratories
at ATR, Japan, to evaluate the system as a tool for automatically measuring the quality of
human-robot social interaction, and to evaluate the expression recognition system in uncon-
strained environments. This test involved recognition of spontaneous facial expressions in
the continuous video stream during unconstrained interaction with a social robot. Subjects
interacted with RoboVie, a communication robot developed at ATR and the University of
Osaka [5].



Figure 4: Human response during interaction with the RoboVie robot at ATR is measured
by automatic expression analysis.

This was a challenging test of the system that involved significant deviations from the con-
ditions used for training the system: The experiment included unconstrained head move-
ment, presence of glasses (there were no glasses in the training set), new racial composition
(100% Asian for this test compared to 3% in training), and changes in lighting conditions.
14 paid participants recruited from the university of Osaka were invited to interact with
RoboVie for a 5 minute period. 10 subjects were male, 4 female, 5 wore glasses, and all 14
were Asian. To address unconstrained head movement, we simultaneously recorded video
from 4 video cameras. (See Figure 4.) Faces were automatically detected and facial expres-
sions classified independently in the four video streams. This resulted in a 28 dimensional
vector per video frame consisting of the continuous outputs of the seven emotion classifiers
(the distance to the separating hyperplane) × 4 cameras.

To assess the validity of the system, four naive human observers were presented with the
videos of each subject at 1/3 speed. The observers indicated the amount of happiness
shown by the subject in each video frame by turning a dial, a technique commonly used
in marketing research. The mean frame-by frame correlation between human judges and
other human judges was 0.54, averaged across subjects and judge pairs.

While in principle we expect 28 outputs per video frame, in practice missing values, oc-
curred often, due to the fact that the face was not detected in one or more of the video
streams. To combine information from the 4 cameras while dealing with missing values
we modeled the 28 dimensional input vector plus the happiness score for each video frame
as a 29 dimensional Gaussian distribution. Maximum likelihood estimates of the model
parameters (mean and covariance matrix) were obtained using the EM algorithm. Once the
mean and covariance matrix are known one can easily compute most probable estimates
for the happiness score of each frame given any subset of the 28 input variables. We tried
several variations of this model, some with extended input vectors including the mean of
the 8 time steps preceeding and following the current frame, for a total of 84 values in the
input. The output underwent temporal smoothing by convolving with a Gaussian (σ = 33
frames).

Figure 5 compares human judgments with the automated system. The average correlation
between the 4 judges and the automated system on training data was 0.56, which does
not differ significantly from the human/human agreement of 0.54 (t(13) = 0.15, p<0.875).
Generalization performance for new images of known subjects was tested using leave-one-
out cross-validation. The system was trained on 4 minutes of video data for a given subject,
and tested on the remaining 1 minute. This was repeated 4 times per subject. Mean corre-
lation across the 14 subjects was .30. The correlation was statistically significant (t(1798)
= 13.3, p << .001). Smoothing the input had little effect on generalization performance
and was dropped. The output smoothing, however, doubled the correlation coefficient from



Figure 5: Mean human labels (–) compared to automated system labels (-) for ’joy’ (one
subject, one observer, training results).

the no-smoothing condition. Mean correlation for females was higher than males (0.42 vs.
0.24; p << .001), and mean correlation for subjects with no glasses was higher than for
those with glasses (0.36 vs. 0.20; p << .001). Mean correlation for all subjects without
occluders (one subject wore a hat), was 0.39.

The inter-coder agreement of the human coders predicted system performance, where the
system gave better performance on subjects for whom inter-coder agreement was also high
(r=0.60; t(12)=2.6; p < .01). Another predictor of system performance was the expressivity
of the subject, rated by a human observer on a 1-10 scale. For the 9 subjects with no
occluders, the system gave better performance on subjects with higher expressivity ratings
(r=.64; t(7)=2.2; p<.01). There was a trend for the female subjects to be rated as more
expressive than the males, which may account in part for the performance advantage for
female subjects.

7 Conclusions

Face to face communication is a real-time process operating at a time scale of less than
a second. The level of uncertainty at this time scale is considerable, making it necessary
for humans and machines to rely on sensory rich perceptual primitives rather than slow
symbolic inference processes. In this paper we present progress on one such perceptual
primitive: Real time recognition of facial expressions.

Our results suggest that user independent fully automatic real time coding of basic expres-
sions is an achievable goal with present computer power, at least for applications in which
frontal views or multiple cameras can be assumed. Good performance results were ob-
tained for directly processing the output of an automatic face detector without the need for
explicit detection and registration of facial features. A novel classification technique was
presented that combines feature selection based on AdaBoost with feature integration based
on support vector machines. The AdaSVM’s outperformed AdaBoost and SVM’s alone,
and gave a considerable advantage in speed over SVM’s. Strong performance results, 93%
and 97% accuracy for generalization to novel subjects, were presented for two publicly
available datasets of facial expressions collected by experimental psychologists expert in
facial expressions.

We introduced a technique for automatically evaluating the quality of human-robot inter-
action based on the analysis of facial expressions. This test involved recognition of spon-
taneous facial expressions in the continuous video stream during unconstrained behavior.
The system predicted human judgments of joy in test sequences. We are presently evaluat-
ing this system as a potential new tool for research in behavioral and clinical studies. We are
also developing automatic face image alignment in 3D, which may improve performance.



Within the past decade, significant advances in machine learning and machine perception
open up the possibility of automatic analysis of facial expressions. Automated systems
will have a tremendous impact on basic research by making facial expression measurement
more accessible as a behavioral measure, and by providing data on the dynamics of facial
behavior at a resolution that was previously unavailable. Such systems will also lay the
foundations for computers that can understand this critical aspect of human communica-
tion. Computer systems with this capability have a wide range of applications in basic and
applied research areas, including man-machine communication, security, law enforcement,
psychiatry, education, and telecommunications.
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Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on
Computers, 42(3):300–311, 1993.

[8] M. Lyons, J. Budynek, A. Plante, and S. Akamatsu. Classifying facial attributes using a 2-d
gabor wavelet representation and discriminant analysis. In Proceedings of the 4th international
conference on automatic face and gesture recognition, pages 202–207, 2000.

[9] C. Padgett and G. Cottrell. Representing face images for emotion classification. In M. Mozer,
M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, vol-
ume 9, Cambridge, MA, 1997. MIT Press.

[10] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 1(20):23–28, 1998.

[11] H. Schneiderman and T. Kanade. Probabilistic modeling of local appearance and spatial re-
lationships for object recognition. In Proc. IEEE Intl. Conf. on Computer Vision and Pattern
Recognition, pages 45–51, 1998.

[12] Kah Kay Sung and Tomaso Poggio. Example based learning for view-based human face detec-
tion. Technical Report AIM-1521, 1994.

[13] Paul Viola and Michael Jones. Robust real-time object detection. Technical Report CRL
20001/01, Cambridge ResearchLaboratory, 2001.


