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Abstract 
 

Interpolation methods have previously been found to be effective for 
handling coarticulation effects in speech recognition when there is 
insufficient data to reliably train models for all combinations of 
phonemes.  These interpolation models employed Hidden Markov Models 
(HMM’s), trained on one output class at a time.  Here, a neural network 
analog of the HMM interpolation methods is discussed and applied  to the 
problem of analyzing facial expressions.  The task was to recognize facial 
actions defined in the Facial Action Coding System (Ekman & Friesen, 
1978). This system defines 46 component actions that comprise facial 
expressions, and are the analog of phonemes in facial expression.  As in 
speech, there are thousands of "words" that the face can express (Scherer 
& Ekman, 1982).  The network demonstrated robust recognition for the 
six upper facial action units, whether they occurred individually or in 
combination.  

 
 

1. Introduction 
 

Facial expressions contain much information beyond what is conveyed by basic emotion 
categories such as happy and sad.  The Facial Action Coding System (FACS) (Ekman & 
Friesen, 1978) is a method for describing facial behavior more comprehensively by 
decomposing facial expressions into component actions (the phonemes of facial 
expressions).  The system defines 46 action units (AU’s), which roughly correspond to 
the movement of each of the individual facial muscles.  Over 7000 combinations of facial 
actions have been observed in spontaneous facial behavior (Scherer & Ekman, 1982).  
FACS is the leading method for measuring facial movement in behavioral science.  
Currently the coding is performed manually by human experts but computer systems are 
being developed to recognize facial actions directly from video.  Such systems could be 
used to develop new human-computer interaction tools, low bandwidth facial animation 
coding such as MPEG-4, and would make facial measurement more widely accessible as 
a research tool in psychology and neuroscience. 

 
An important problem that needs to be addressed for realistic applications of such 
systems is robustness to co-articulation effects.  Co-articulation effects refer to the fact 
that a facial action can look different when produced in combination with other actions.  
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(See Figure 1.)  In this paper, we evaluate the performance of an automatic FACS 
recognition system with respect to this issue.  In the past, the system demonstrated good 
recognition performance on a set of 12 individual facial actions (Donato et al. 1999; 
Bartlett et al. 2000), but the training and testing did not investigate robustness to co-
articulation effects.  
 
Co-articulation effects is a term borrowed from the  also present in the speech recognition 
literature (Rabiner & Juang, 1993). Phonemes can have very different waveforms when 
produced in context of other phonemes.  A standard solution to the co-articulation 
problem in speech is to extend the units of analysis to include context.  For example, 
instead of developing phoneme models one may develop triphone models, which include 
previous and posterior context.  In our case, we could develop models for combinations 
of 2 and 3 FACS units.  While the number of possible combinations grows exponentially, 
in speech only a small percentage of such combinations appears in practice.  The problem 
with this approach is that the amount of data available to teach combination models 
decreases dramatically with the number of combinations and thus the models become less 
reliable.  This is known in the statistics literature as the bias/variance dilemma (Geman, 
Bienenstock, Doursat, 1992).  Simple models that do not take into account context tend to 
be more robust, while context-dependent models tend to be more precise. 
 
An approach used in the speech recognition community to address this problem is to 
combine context independent models and context dependent models.  We will illustrate 
the approach with an example.  Suppose we have 10 examples of Action unit 1 in 
isolation (AU1), 10 examples of AU2 in isolation and 10 examples of AU1+AU2 (a 
combination of AU1 and AU2).  First, we create two ‘‘context independent’’ models, one 
trained with the 20 examples of AU1 (alone and in AU1+AU2) and another one trained 
with the 20 examples of AU2.  Second, we create three ‘‘context dependent’’ models, 
each of which use 10 examples.  The context independent models will in general be more 
robust but less precise, while the context dependent models will be more precise but less 
robust.  Finally the two sets of models are combined by interpolation:  if λi and λd are the 
parameters of the context independent and context dependent models for AU1, the 
interpolated model would have parameters λi+(1- )(1-λd).  The value of  is set using a 
validation set to maximize generalization performance.   
 
This technique has been successfully applied to several problems in speech recognition 
using HMM’s (Rabiner & Juang, 1993).  Interpolation models were found to be effective 
when there is insufficient data to reliably train models for all possible combinations of 
phonemes.  A similar situation occurs in facial expressions, where there is insufficient 
data to train all possible combinations of the 46 facial actions in defined in FACS. 
 
Here we apply the concepts of context dependent and context independent training to 
neural networks.  One way to perform context dependent training with a neural network 
is to employ one output unit for each possible combination of action units, effectively 
treating each combination as a separate class.  Referring to the AU1+AU2 example, there 
would be three output units corresponding to the three possibilities: AU1 alone, AU2 
alone, and AU1+AU2. There would be no hidden units, and no competition in the output 
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layer. To train on all observed combinations of the 46 Action Units, over 7000 output 
units would be required, along with an enormous amount of training data. 

 
One way to perform context independent training with a neural network is to use one 
output unit per facial action, with no hidden units, and no competition in the output layer.  
This architecture treats each action unit as a class, regardless of other co-occurring 
actions.  Using the AU1+AU2 example above, there would be two output units, one for 
each AU.  Output unit number 1 would be trained to detect AU1 regardless of whether 
AU1 occurred alone, or in conjunction with AU2. Again, there would be no hidden units, 
and no competition in the output layer.  

 
In the architecture with no hidden units, each of the n output units performs context-
independent detection of the associated AU. The architecture is effectively a set of n 
context-independent models with no cross-communication between them.  Here we 
employ a neural network with one output unit per facial action, as in the context 
independent architecture, plus we add a hidden layer. By adding hidden units, we 
implicitly obtain an interpolation model. The hidden units can learn AU combinations, as 
they received learning signals from all of the output units during training. The more 
hidden units, the more context dependent classes the network can learn.  This is a neural 
network analog of the interpolation models discussed in the speech recognition 
community. The  parameter that weights the contribution of the context-dependent and 
context-independent models is incorporated into the weights of the neural network.  
 

 
AU1   AU2   AU4          AU 1+2+4 

    Inner brow raise     Outer brow raise       Brow lower       Combination 
 

          
 
Figure 1.  Three action units demonstrated individually and in combination.  The 
combination of AU 1+2+4 occurs in fear.  

 
 

2. Methods 
 

Two image databases were employed, the Ekman-Hager database of directed 
facial actions (Bartlett et al., 1999), and the Cohn-Kanade database of FACS-coded posed 
expressions (Cohn, Kanade, & Tian, 2000).  The databases consist of image sequences of 
subjects performing specified facial actions (Ekman-Hager) or directed facial expressions 
(Cohn-Kanade).  Each sequence began with a neutral expression and ended with a high 
magnitude muscle contraction.  We used 111 Ekman-Hager sequences from 20 subjects 
and 340 Cohn-Kanade sequences from 48 subjects.  We restricted our system to an 
attempted to classify six upper face actions. 
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The face of each subject was located in the first frame in each sequence using the centers 
of the eyes and mouth.  These coordinates were obtained manually by a mouse click.  The 
coordinates from Frame 1 were used to register the subsequent frames in the sequence.  
The aspect ratios of the faces were warped so that the eye and mouth centers coincided 
across all images.  The three coordinates were then used to rotate the eyes to horizontal, 
scale, and finally crop a window of 66x96 pixels containing the upper face.  To control 
for variations in lighting, logistic thresholding and luminance scaling was performed.  
'LIIHUHQFH�LPDJHV�� -images) were obtained by subtracting the neutral expression in the 
first image of each sequence from the subsequent images in the sequence. 
 
(QWLUH� -images were convolved with a bank of Gabor filters, wavelets made up of 2-D 
sine waves modulated by a Gaussian.  Our filter banks consisted of Gabors at 8 
orientations and 5 spatial scales, using the Gabor representation defined by Donato et al. 
(1999)  (based on Lades et al., 1993).  A vector representation of the Gabor filter outputs 
comprised the input to a neural network classifier. 
 
The three layer neural network was made with 253440 input units, consisting of the 
outputs of the 40 Gabor filters at each of the 66x96 pixel locations, 15 hidden units and 6 
output units one for each AU.  The choice of 15 hidden units was based on pilot data that 
showed that performance began to drop at about 18 hidden units. Network weights were 
trained using back-propagation with weight decay to output a 1 in the corresponding 
output unit for each AU that was present in the input image.  Hence the desired output for 
AU1+AU2 was {1 1 0 0 0 0}.  There was no competition in the output layer, and output 
activities greater than a threshold of 0.5 were considered active.  Training and testing was 
preformed using leave-one-out cross validation.  The Cohn-Kanade data was split into 4 
approximately equal sized sets selected such that data from a given subject appeared in 
only one set.  Three of these sets were combined with the entire Ekman-Hager set and 
presented to the network for batch training.  Following the training period the remaining 
Cohn-Kanade set was presented to the network and its outputs were recorded.  The 
network weights were reinitialized and another Cohn-Kanade set was held out for testing.  
At the end of this process, data corresponding to generalization performance on all Cohn-
Kanade data had been collected. 
 
 
3.  Results & Discussion  
  
Network performance was tested for generalization to novel subjects.  The performance 
can be evaluated in two ways.  Recall that there are six output units corresponding to 
each of the six upper face action units.  Accuracy of each output unit can be analyzed 
separately, providing a recognition rate for each facial action regardless of context.  For 
example, we can measure the proportion of times Output 1 correctly indicates the 
presence or absence of AU1 regardless of whether AU1 occurs alone or in combination 
with other AU’s.  Table 1 gives recognition accuracies for the 6 action units.  Mean 
recognition rate for the six action units was 98.0%.  A second way to evaluate 
performance of the network is to measure the joint accuracy of all six output units.  Here 
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all six outputs must be correct in order for the network output to be scored as correct.  For 
example, if the test image is AU1+AU2, the output must be [ 1 1 0 0 0 0 ].  Table 1 
shows a joint accuracy of 93.0%.  Similar results were obtained by Tian et al. (2001) 

using a different form of input representation.  Performance was also evaluated while 
varying the numbers of hidden units through 0 (perceptron), 3, 6, 9, 12, 15, 18 and 21.  
Best performance was obtained with 12 and 15 hidden units.  Performance dropped 
slightly for 18 and 21 units.  
 

AU Recognition Accuracy 

AU1 AU2 AU4 AU5 AU6 AU7 Mean Joint 

0.9823 0.9866 0.9794 0.9806 0.9791 0.9734 0.9802 0.9298 
 
Table 1.  The first six entries indicate the probability that the network 
produced the correct output for the associated AU.  “Mean” indicates the 
mean recognition accuracy across the six AU’s.  The final entry (Joint) 
indicates the probability that the network produced the entire desired 
output vector for all given AU combinations.  (There is no AU3 in FACS). 

 
 
In this paper we presented a neural network analog of the interpolation models discussed 
in the speech recognition community, and applied it to the problem of recognizing facial 
actions.  The network demonstrated robust recognition for the six upper facial action 
units, whether they occur individually or in combination. Our results show that neural 
networks may provide a reasonable approach to handling coarticulation effects in 
automatic recognition of facial actions. 
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