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Abstract—An asynchronous communication scheme for scal-
able routing of spike events in large-scale neuromorphic hard-
ware is presented. The routing scheme extends the Address-
Event Representation (AER) protocol for spike event communi-
cation to a modular, hierarchical architecture supporting efficient
implementation of global synaptic inter-connectivity across a
cellular matrix of message parsing axonal relay nodes at varying
spatial scales. This paper presents a probabilistic framework
for analyzing trade-offs in throughput and latency of synaptic
communication as a function of load and geometry, and sim-
ulation results verifying the statistics of traffic flow across the
architecture.

I. INTRODUCTION

One of the major challenges faced in neuromorphic engi-

neering is the vast numbers of neurons and synapses involved

in modeling cognitive neural systems, such as cortical models

of visual information processing. The combination of locally

dense and sparsely global synaptic connectivity makes it

virtually impossible to implement such systems with dedicated

wiring for the synaptic connections using conventional 2-D

silicon microtechnology. The need for ‘virtual wires’ in im-

plementing global forms of connectivity between multiple mi-

crochips implementing neural functions has prompted research

into efficient communication between multiple neuromorphic

chips.

Early research in multichip communication between neu-

romorphic chips led to the Address-Event Representation

(AER) protocol [1]. AER was originally formulated for time

division multiplexing of events to emulate the high degree

of connectivity between neurons [1]–[3], and further ex-

tended with specialized addressing schemes to ensure on-

time delivery of messages to their destinations [4]. Over time

AER became the de facto protocol for spike based inter-chip

communication to connect neurons across multiple chips [5]–

[7]. The combination of dense memories, digital logic, and

analog neurons enabled the implementation of large scale

reconfigurable neural architectures that extend on the basic

AER protocol to achieve greater functionality in modeling

synaptic connectivity and plasticity [8], [9], such as spike

timing-dependent plasticity in the address domain [10], [11].

While the extended AER synaptic routing protocol provides,

in principle, for unlimited spatial connectivity between neu-

rons, bandwidth limitations in a single-bus implementation

of AER constrain the size and activity level of the network,

where the product of neural activity and synaptic connectivity

cannot exceed this bandwidth. To overcome this limitation,

grid based approaches have been proposed, where multiple

AER routing nodes are connected in a mesh that operates

in systolic fashion [12]. Although these multi-bus grid ap-

proaches improve on the bandwidth limitations of single-

bus AER, limitations on memory use and latencies in the

implementation of typical large-scale neural systems, due to

the wide range in spatial synaptic connectivity and temporal

dynamics in axonal propagation, are challenges for scalable

implementation that are addressed in this paper.

We extend AER spike communication from a flat architec-

ture to a fractal hierarchy. Specifically we extend flat AER,

with a single address bus shared [8], [9] or a grid of address

routers distributed [12] across neurons, to hierarchical AER,

with repeated address buses and communication relays at

varying spatial scales of synaptic interconnectivity. We par-

tition delays and provide provisioning for a hierarchical delay

scheme. This extension is critical in scaling up neuromorphic

systems towards levels of synaptic connectivity approaching

that of the human central nervous system. We present a

probabilistic framework to quantify throughput and latency of

synaptic communication as a function of load and geometry,

and verify these findings with simulations on statistics of event

traffic and queue occupancy for different geometric spread of

synaptic fan-out.

II. ARCHITECTURE

The proposed synaptic routing architecture (Fig. 1) is based

on the address-event representation (AER), but differs from

conventional [1] and grid [12] AER routing due to the multi-

scale hierarchical, rather than flat representation of address

events, as well as the partitioning of event delays in a hierar-

chically optimal manner. Its ability to efficiently route events

through global hierarchies, and to model the wide range of
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Fig. 1. Multi-chip hierarchical spike event communication architecture, with
integrate-and-fire array transceiver (IFAT) neuronal blocks, and multi-level
neural event routers

delays in axonal and dendritic propagation through such global

structures, presents a significant advantage.

A. Multi-Level Synaptic Event Routing

In the proposed architecture, synaptic events are pooled by

presynaptic address, for efficient routing to destination areas

at multiple levels of increasing spatial scale. The sequence

of routing steps from a presynaptic source event to multiple

postsynaptic destination entails the following:

1) The presynaptic neuron sends a single event locally.

2) Each routing node recognizes the event by a local

address, unique to the presynaptic neuron and routes

the event to parents, children and/or siblings as needed,

based on the connectivity at that level of spatial scale.

It utilizes local storage as an address look-up table to

identify the immediate destinations of the event, where

this process is repeated. All along, the propagating mes-

sages represent the same presynaptic event throughout

the hierarchy.

3) In routing hops, logarithmic in the size of the network,

the presynaptic event is able to reach the leaf nodes in

the hierarchy (at the postsynaptic neuron level). At each

destination, the local address of the event indexes the

synaptic table for the local postsynaptic addresses and

synaptic parameters. This is the only place in the entire

hierarchy where postsynaptic data is represented.

By virtue of source encoding, events are bundled from one

source to multiple destinations into one transmitted message,

hence more effectively making use of the available bandwidth.

It should be noted though, that using this scheme means

that the routing elements need a priori information on the

destinations for each source. In a flat system, this requires that

each source have a unique global address, severely reducing

the total number of neurons the system can accommodate.

In the hierarchical system, only the next destination for the

original source needs to be stored at each routing node, thus

aliasing is not a factor. Another feature of the hierarchical

partitioning is that neurons that are spatially separated in

Large  delays 10-20 ms

delays 1-.5 ms

delays 100~50 us

Fig. 2. Topological event grouping and partitioning of axonal delays. Synaptic
events with larger delays, traveling larger distances, are grouped according to
presynaptic source addresses, thereby reducing queue occupancy (Sec. III-C).

the biological system can be mapped to spatially separated

nodes in the architecture. Since these nodes communicate

less frequently than those closer together, the bandwidth for

communicating between chips is not taxed as heavily as that

within the chip, which in turn is not taxed as heavily as the

bandwidth within a neuronal cell/array.

The hierarchical partitioning of the system also enables the

reliable implementation of delays consistent with those found

within a biological system [11]. Within a biological system

axonal delays and their contribution to learning have been

widely studied, they are modeled as propagation delays as

shown in Fig. 2. Similarly in this architecture, the source and

destination of messages preserve the topology of their coun-

terparts in biological systems. The delays are implemented as

waiting times within queues. A combination of large and fine

delays results in a high degree of control. Each level of the

hierarchy implements delays at a temporal resolution that is

progressively coarser with the distance from the lowest level.

Because of the pooling of longer range, slower synaptic events

according to presynaptic address, fewer events are routed at

the higher levels, thereby reducing the occupancy of long wait

events in the router queues.

B. Implementation

Figure 1 provides an overview of the simulated architecture.

The example given assumes integrate-and-fire array transceiver

(IFAT) based neurons, but the architecture is independent

of the details of neuronal implementation. The neurons are

physically present in a neuronal array at the lowest level (L0)

region, along with the synaptic look-up tables. When an event

arrives the L0 arbiter, through a series of synaptic fan-out

tables (FOT), looks up the addresses of the synaptic recipients.

If the recipient is physically located within this L0 array of

neurons, the event is looped back, with required adjustments

made in the weights of the synapses. If the destination is in

a different address space, the source information is placed on

the level-1 (L1) bus, and a message copy is sent to each sibling

that is part of the destination. If the destination is off-chip, the

same sequence of routing events is replicated at a larger, multi-

chip scale. This form of event-messaging can be replicated at
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Fig. 3. Probabilistic model of event routing at level k in the routing hierarchy.
(a): Event messages from children are routed to siblings and the parent. (b):
Event messages from parents or siblings are routed only to children.

each level of hierarchy as described below. A sample router at

any level-k (Lk) is shown in Fig. 3, and assumes a probabilistic

model of the following communication scheme:

1) Any node can communicate either to its siblings or to

its parents if it has to send a message received from its

child (trickle up).

2) If a message is received by a node from its siblings or

its parents it will send those events only to its children

(trickle down).

3) In case the same message has to be sent to multiple

children or multiple siblings, that message will be repli-

cated.

In the implementation, all arbiters/routers are further equipped

with FIFO structures into which they accept events, process

them, and ‘pop’ them. The FIFO processing time contributes

to the overall delay experienced by an event and together with

the modeled axonal delays determines the event rate capacity

of the routing network as well as the queue occupancy at the

routing nodes.

III. ANALYSIS

In what follows we derive and analyze, using physically

based assumptions and approximations, expressions for global

and local fan-out, global event traffic, and queue occupancy

as a function of geometric parameters related to connection

topology and propagation delays, inspired by the spatial dis-

tribution and delay properties of axons and white matter. The

analysis follows general principles of routing in fat tree-based

network architecture for which extensive theory and analysis

exists [13], which applies directly to the hierarchical tree-based

AER framework presented above.

A. Global and local synaptic fan-out

Let the global synaptic fan-out be be given by S, and

the local synaptic fan-out, originating from level i in the

hierarchy (Li) be given by Si. We also define Pi,i+1, Pi,i and

Pi,i−1 as the probabilities of parent, sibling, and child event

transmission, respectively from level i to parent at level i+1,

from one node to all its siblings at level i, and from a parent

at level i to its child at level i − 1. We further assume a

tree-based topology of the routing hierarchy with a branching

factor n between consecutive levels i and i + 1, and with

depth d, i = 0, 1, . . . d. We then probabilistically express the

global synaptic fan-out in terms of the local synaptic fan-outs

at various levels i as:

S = S0 + (n − 1)P1,1S1

+P1,2(n − 1)P2,2nP2,1S2 (1)

+P1,2P2,3(n − 1)P3,3nP3,2nP2,1S3 + . . .

In the special case of a flat hierarchy, we may assume a

uniform connectivity at multiple scales, i.e., S0 = S1 = . . . =
Sd = Sℓ. Therefore, for a hierarchy of depth d the global

connectivity S is given by ndSℓ, or NSℓ where N is the

number of leaf nodes in the hierarchy. In other words, each of

the N L0 routers shares an equal fraction S/N of the global

connectivity bandwidth S. More generally, for various degrees

of locality in the connectivity, we define a geometric spread

parameter 0 ≤ λ ≤ 1 that approximates the event transmission

probabilities across the hierarchy of spatial connectivity scales

in a geometrical series:

Si = Sℓ

Pi−1,i = 1 (2)

Pi,i = λ

Pi,i−1 = λ

expressing a fractal geometry pattern in the synaptic connec-

tivity, with equal branching of fan-out at each spatial scale.

This leads to a geometric power series for the fan-out (1):

S = (1 + (n − 1)λ + (n − 1)nλ2 + (n − 1)nk−1λk)Sℓ

=
1 − λ − (n − 1)ndλd+1

1 − nλ
Sℓ (3)

in the branching factor n, geometry spread λ, and up to a

depth d of the hierarchy. Note that this series converges to

a finite global connectivity at infinite depth, limd→∞ S =
(1− λ)/(1− nλ) Sℓ, for a spread parameter smaller than the

branching ratio, λ < 1/n. In general, for finite depth d, we

consider values of spread λ between 0 and 1, corresponding

to the extremes of strictly local and strictly global synaptic

connectivity, respectively. The dependence between global S
and local Sℓ synaptic connectivity, for various branching factor

n and geometry spread λ, is illustrated in Fig. 4.

B. Event global messaging traffic through the hierarchy

The traffic of global messages throughout the hierarchy,

in service to a neural event at any local source location,
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Fig. 4. Global synaptic fan-out S relative to local fan-out Sl as a function
of geometric spread factor λ.

decomposes at different levels of synaptic reach Lk as follows:

L0 : 1 + S0

L1 : 1 + (n − 1)P1,1 + (n − 1)P1,1S1

L2 : P1,2 + P1,2(n − 1)P2,2

+P1,2(n − 1)P2,2nP2,1 + P1,2(n − 1)P2,2nP2,1S2

Lk : P1,2P2,3 . . . Pk−1,k (4)

+(n − 1)P1,2P2,3 . . . Pk−1,kPk,k

+(n − 1)nP1,2P2,3 . . . Pk−1,kPk,kPk,k−1 + . . .

+(n − 1)nk−1P1,2P2,3 . . . Pk,kPk,k−1 . . . P3,2P2,1

+(n − 1)nk−1P1,2P2,3 . . . Pk,kPk,k−1 . . . P3,2P2,1Sk.

In the special case of strictly local connectivity, only the first

term is non-zero, and all messaging is strictly local. The other

extreme case of interest is a flat globally connected hierarchy

(lambda = 1), Pi,j = 1 and Si = Sℓ, for which the next

messaging traffic across the hierarchy is given by 1 + n +
n2 + · · ·+nd +ndSℓ = (1−nd+1)/(1−n)+ndSℓ. If Sℓ ≫ 1
or S ≫ nd, then the traffic overhead of a flat implementation

over a hierarchical implementation is negligible. In general, for

0 ≤ λ ≤ 1 we consider Si = Sℓ, Pi,i = Pi,i−1 = λ, Pi,i+1 =
1 as above, resulting in a total traffic S + T , where S is the

net combined local synaptic messaging at all postsynaptic sites

in the hierarchy, and where T is the total overhead traffic in

combined global messaging to deliver the presynaptic source

event to each of its postsynaptic destinations:

T = d + 1 + (n − 1)λ

(

d

1 − nλ
−

nλ(1 − (nλ)d)

(1 − nλ)2

)

. (5)

It is interesting to relate this net messaging overhead in global

traffic to the number of routing nodes in the hierarchy:

N = 1 + n + n2 + . . . nd =
1 − nd+1

1 − n
. (6)
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Fig. 5. Traffic overhead T/N , as the number of global messages per spike
event per routing node, as a function of geometric spread factor λ.

For a global uniform connectivity λ = 1, this results in a

worst-case traffic overhead per router T/N of 1. In other

words, in the worst case of full global connectivity, each router

in the hierarchy sees each neural event passing by just once,

regardless of the synaptic fan-out. In the other extreme of

strictly local connectivity λ = 0, the traffic overhead is zero,

T/N = 0, and all event messaging is local to serve the local

postsynaptic sites. The general case 0 ≤ λ ≤ 1 falls between

these extremes with 0 ≤ T/N ≤ 1, illustrated in Fig. 5.

C. Delay partitioning for reduced queue occupancy

To analyze queue occupancy at each of the routing nodes

due to the required wait times imposed by the modeled

axonal delays, we further consider a geometrically structured

dependence of axonal delays organized along the routing

hierarchy, as illustrated in Fig. 2. We denote τi as the average

total axonal (and dendritic) delay of a connection between

a presynaptic and postsynaptic neuron crossing at level k in

the hierarchy, where we assume that typically these delays

increase with increasing spatial scale: τi > τj for i > j.

For efficient routing of these events (and also modeling the

geometric bundling of event transmission along axonal fiber

bundles in white matter), we take advantage of the typically

increased sparsity of event messaging at larger spatial scales.

In particular, we partition the axonal (and dendritic) delays τi

into queue wait times distributed across the routers in the path

of the synaptic transmission:

τi = τ0,1 + τ1,2 + . . . + τi−1,i

+ τi,i + τi,i−1 + τi−1,i−2 + . . . + τ1,0 (7)

where τi,i is the delay (queue wait time) in the event routing

at level i to siblings, τi,i+1 is the delay in the event routing

from a child at i to its parent at i + 1 (0), and τi,i−1 is

the event routing from a parent at i to its children at i − 1.
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Without loss of generality, and to minimize timing errors in

the implementation, we may assume τi,i+1 = 0 since an event

does not multiply during up-level transmission, Pi,i+1 = 1
with unity event fan-out.

The global queue occupancy Qhier for synaptic events at

the level i connectivity scale, for an event rate ν per L0

routing node (spike rate times the number of local neurons)

and corresponding propagation of these events through the

cascade of parents, siblings, and children, is then quantified by

summing the individual queue occupancies approximated by

Little’s law [14] in each of the routing nodes in the synaptic

path as:

Li : ντi,iP1,2P2,3 . . . Pi−1,i(n − 1)Pi,i

Li − 1 : ντi,iP1,2P2,3 . . . Pi−1,i(n − 1)Pi,i

... (8)

L1 : ντ2,1P1,2P2,3 . . . Pi−1,i(n − 1)Pi,i

nPi,i−1nPi−1,i−2 . . . nP2,1

L0 : ντ2,1P1,2P2,3 . . . Pi−1,i(n − 1)Pi,i

nPi,i−1nPi−1,i−2 . . . nP2,1Si.

In contrast, for a flat hierarchy without intermediate routing

nodes and without partitioning of the delay τi (7), the flat

queue occupancy Qflat for synaptic events at the level i
connectivity scale subject to the τi wait time is given by

ντi . . . P1,2P2,3 . . . Pi−1,i(n − 1)Pi,i

nPi,i−1nPi−1,i−2 . . . nP2,1Si. (9)

The relative queue occupancy, for the hierarchical vs. the flat

routing architecture, is then given by

Qhier

Qflat

=

τ1,0

1
+

τ2,1

σ1Si
+

τ3,2

σ2Si
+ . . . +

τi,i−1

σi−1Si
+

τi,i

σiSi

τ1,0 + τ2,1 + τ3,2 + . . . + τi,i−1 + τi,i

(10)

where

σj = nj−1Pj,j−1 . . . P3,2P2,1. (11)

Qhier is thus guaranteed lower than Qflat, leading to savings

in memory hardware resources, when σjSi > 1 for all j ≤ i.
For large local synaptic fan-out Sℓ this is usually the case.

More generally, the delay distribution also plays an important

role in relative queue occupancy for hierarchically partitioned

delay distribution. To this end we introduce a geometric stall

parameter µ, which quantifies the degree of progressive slow-

down in the partitioned delays at increasing spatial scale.

Specifically, we assume another geometric series in spatial

scale i, now for the axonal/dendritic delays τi with stall

parameter µ:

τj,j+1 = 0

τj+1,j = τ0µ
j (12)

τi,i = τ0µ
i

for all 0 ≤ j ≤ i−1. Together with the geometric dependence

of event messaging through the spread parameter λ, the geo-

metric stall dependence (12) yields the following expression
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Fig. 6. Queue occupancy in hierarchical routing Qhier relative to flat
synaptic routing Qflat, as a function of geometric stall factor µ.

for the relative queue occupancy (10):

Qhier

Qflat

=

(

1 +
µ

Sℓ

1 − ( µ
nλ

)i

1 −
µ

nλ

)/(

µi+1 − 1

µ − 1

)

(13)

In the pathological case of zero stall µ = 0, all delay is

concentrated at the postsynaptic level, and no savings result,

Qhier/Qflat = 1. The more realistic and interesting case

µ > 1, with increasing delays at increasing spatial scales, may

yield significant savings in queue occupancy for large Sℓ, with

guaranteed savings for µ ≥ nλ (although this condition is not

essential). Example curves for this dependency as a function

of stall µ and depth d (i) are shown in Figure 6.

IV. EXPERIMENTS AND RESULTS

We created a model of the message passing behavior in

this network along with realistic assumptions on traffic load

at each level of hierarchy assuming a uniform, randomly

connected network. Results from simulating the network using

a hierarchical implementation with depth d = 1, in comparison

with those obtained by simulating the equivalent network in a

flat representation d = 0, are shown in Fig. 7.

The product of the average delay faced by an element τ with

the rate of incoming events ν as well as the average of the

number of events in the queue Q, are displayed. According

to Little’s law [14] ντ = Qave where Qave is the long

time average of elements in the queue. The rate of incoming

events ν is essentially the number of neurons, local at the L0
level, multiplied by the average rate of fire for each neuron.

This queue can be treated as a system in queuing theory

and analyzed using established results from queuing theory

and network theory. The results can be used for creating an

efficient design and deriving performance bounds. Queuing

theory based models have been very well studied with multiple

characteristics, thus their use allows for great flexibility in

analyzing a large variety of implementations [15].
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Fig. 7. Observed random, average, and theoretical queue occupancy as a
function of event rate, (a) for a flat hierarchy with delay τ0 = 1.6 ms, and
(b) for a depth d = 1 hierarchy with λ = 0.25, n = 8, τ11 = 1.4 ms, and
τ10 = 0.2 ms. Global synaptic fan-out S = 1, 000 in both cases.

V. CONCLUSIONS

In this paper a modular architecture for scalable, hierarchical

AER asynchronous spike event routing was presented. By

virtue of fractal hierarchy, spike events may be efficiently

communicated to neurons over a wide distribution of distances,

supporting global synaptic inter-connectivity with nearest-

neighbor cellular communication at varying spatial scales.

We presented trade-offs between throughput and latency of

spike communication as a function of synaptic density, spike

rate, and FIFO buffer length, and verified these findings

with statistical results obtained from simulations on a small-

scale version of the architecture. We analyze the presented

architecture with respect to queuing theory and show a close

correspondence between the results. This results in an ease in

evaluating trade-offs for designing the hardware system. These

simulation results indicate that a synaptic fan-out of 1,000

can be sustained across a network of arbitrary large scale,

implemented in parallel assuming today’s standard processing

and memory limits. Future work is directed towards integrat-

ing the implementation of the asynchronous communication

architecture with spiking neuromorphic analog hardware.
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