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Abstract—We present a compact circuit architecture for analog
VLSI realization of event-addressable neuromorphic arrays with
conductance-based synaptic dynamics. Synaptic input events are
time-multiplexed, pooled by synapse type according to common
reversal potential and activation dynamics. One such physical
synapse element per postsynaptic neuron is provided for each
type, selected by type index along with postsynaptic address. A
log-domain encoding of first-order linear dynamics of synaptic
conductance results in a compact circuit realization with three
MOS transistors per synapse element. Circuit simulations show
low-power operation with linear dynamics in conductance.

I. INTRODUCTION

Neuromorphic engineering [1] utilizes inspiration from bi-
ology and neurobiology to direct and motivate the design and
modeling of circuits and systems. By emulating form and
architecture in biological systems, neuromorphic engineering
seeks to emulate function as well. Investigation of neural
behavior on large scale requires efficient and realistic modeling
and implementation of neurons and their synaptic connections
[2]-[4].

Analysis of a variety of different implementations of
conductance-based dynamical synapses, and new circuit that
overcomes some of their limitations, are presented in [5].
In particular, [5] analyzes the trade-offs among the differ-
ent implementations regarding functionality of the temporal
dynamics and the required layout size, and offers a circuit
with linear dynamics in conductance. Earlier implementations
of VLSI synapses such as the pulse current-source synapse
[1] and reset-and-discharge synapse [6] suffer from inability
to integrate input spikes into continuous output currents and
linearly sum postsynaptic currents respectively. Other previous
circuits such as the linear charge-and-discharge synapse [7]
and current-mirror-integrator synapse [8], [9] , and [10] also
suffer from nonlinear summation of postsynaptic currents. The
synapse implementations of log-domain integrator synapse
[11] and diff-pair integrator synapse [5] implement linear
summation of postsynaptic currents, but they require an M,
p-FET or additional transistors.

Here we show that a variant on the log-domain imple-
mentation gives rise to linear conductance dynamics in more
compact form. Here we present a three-transistor realization
of a dynamical conductance-based synapse element, serving
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Fig. 1. Pooling of synapses with common reversal potential and activation
dynamics, but possibly with different conductances, by time-multiplexing
input events from j presynaptic neurons.

multiple synapses with common reversal potential and activa-
tion dynamics. The time-multiplexing synapse element pools
spike input events from multiple presynaptic source addresses
through the address-event representation (AER, [12]) commu-
nication framework as seen in Fig. 1.

II. SYNAPSE ARRAY ARCHITECTURE

This paper focuses upon the architectural design of the
pooled synapse input for each neuron within the neural array.
We assume that the number of distinct synapse types is limited
to a relatively low number k, e.g., k = 8. This assumption is
typically valid even in large-scale cortical models. We pool
synapses of the same type serving the same postsynaptic
terminal into a time-multiplexed synapse element. Synapse
elements in the array are activated by presynaptic events pre-
sented through an AER input interface [12]. Neurons receiving
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Fig. 2. Illustration of the convolution between the conductance dynamics

and conductance strength using two versions (a) a single decay 7, and (b) a
rise and fall time 71 and T2.

synaptic inputs from these elements further interface through
AER arbitration to generate postsynaptic output events [12].

ITI. SYNAPSE ELEMENT
A. Modeling of Conductance Dynamics

We assume a general conductance-based synapse with
continuous activation dynamics. The postsynaptic membrane
receives synaptic current contributions,

S L= gijfiit —t5)(Vi — Eij) (1)
J ik

where % denotes the post-synaptic neuron, j denotes the pre-
synaptic neuron, k indicates the spiking event number, g;;
is the conductance strength between neuron 7 and neuron j,
fij(t — tf) indicates the conductance dynamics profile, V; is
the membrane voltage of pre-synaptic neuron ¢, and E;; is the
reversal potential between neuron ¢ and neuron j.

Synaptic current contributions to postsynaptic neuron ¢ are
partitioned according to synapse type as
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where each partition serves synapses with common synapse

parameters in terms of reversal potentials
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Fig. 3. The circuit implementing the synapse element consisting of 3 MOS
transistors.

where 6 indicates the synapse type. The partitions pool each
of the synaptic contributions from the respective presynaptic

neurons as:
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where gz@ (t) denotes the time-multiplexed pooled conduc-

tance of synapse element (6) of postsynaptic neuron i:
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The temporal profile of gz(e)(t) is illustrated in Fig. 2. A log-

domain recurrence relation expressing this pooled conductance
leads to compact realization as described next.

B. Linear and Log-Domain Recurrence Relation

A general conductance dynamics profile f(®) can be char-
acterized by two terms: a fall time 71(9) and a rise time 7'2(9).
We start by modeling the transient conductance dynamics
as a single decaying exponential with time constant 7()
as illustrated in Fig. 2(a), and note that the more general
case can be implemented by convolution of the activation
functions ggf) with decaying exponential on shorter time scale
as illustrated in Fig. 2(b). The convolution between the
conductance dynamics and conductance strength using a single
delay 7(9) is expressed as:

d
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where 0(t — ﬁ;‘) is an impulse centered at time t¥, representing
a presynaptic input event from neuron j of synapse type 6 to
postsynaptic neuron j.

We utilize a log-domain circuit to exploit the linear relation-
ship between the subthreshold MOSFET gate-source voltage
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and channel currents. So we express g, ~ in the log-domain:
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leading to
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The solution to the integrator with constant delay (10) in
between events t? and t?“ is:

d
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and at the arrival of an event té?, for e — O:
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Transformed back to the current domain, the resulting con-
ductance gge) follows the desired linear dynamics in input
activation:

9 (th + €)= gV (th —€) + g7 (13)

and exponential decaying conductance in between presynaptic
events with time constant:

g (1) = gP ()= ik < p <kt (14

IV. CIRCUIT ARCHITECTURE

The common reversal potential parameter for each synapse
partition E() is simply implemented as a single nMOS
transistor operating in the subthreshold region:

Invos = MoeVo/Ur (e7Ve/Ur — e=Va/Ur) = (15)

where Vj is the gate voltage, V; is the source voltage, Vg is
the drain voltage, A is the W/L ratio of the transistor, Ij is
the subthreshold pre-exponential current factor, r,, indicates
the back gate effect, and Ur is the thermal voltage, kT/q.
The transistor operates in the subthreshold region while the
drain-to-source voltage is less than 4Ur. Since the voltages
are implemented in log-domain circuits, the resulting output
current can be expressed as:

I x kV,(V; — E©), (16)

To implement the input recurrence (12) composed of the

. . . (9)
input term of the incoming conductance strength value g,
. . . (0 -
multiplied by a negative exponential e_“i6 (5 ), we utilize
CMOS technology to implement the negative exponential

O (gky . . . .
e % (%) with a single diode-connected pMOS transistor

operating in the subthreshold region:

Ipnos o e Va/Ur, (17)

We activate the pMOS with a short pulse centered at t? .

(0)

The conductance strength g;;” can in principle be implemented

by modulating the pulse voltage logarithmically. Rather than
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Fig. 4. Transistor-level circuit simulation illustrating both the: a) activation
function gge) with 3 groups of different activation widths (detail shown in
inset); b) log-domain variable w and c) time-domain conductance g.

adding this complication to the circuit and the drivers at the
periphery of the array, we modulate the pulse width linearly in
the conductance strength ggf)). Notice that a back gate effect
parameter k, and k, is present in both of the expressions
for the input (13) and output (15) of the synapse element.
The ~ parameter indicates the efficiency of a change the gate
voltage and the resultant change in surface potential. This
loss in efficiency is due to the bulk terminal in a MOSFET,
which can act as another gate terminal (also referred to as
the ’back-gate effect’). Fortunately, this effect will have little
consequence if the nMOS and pMOS devices have sufficiently
close back-gate effects, k,, = K.

By virtue of the log-domain transformation, the decaying
exponentials e~*/7 in the conductance dynamics fij(t — t];)
are implemented using a single nMOS transistor operated in
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Fig. 5. Transistor-level circuit simulation illustrating Ag for 4 groups of
different activation widths.

subthreshold and used as a constant current source to linearly
charge capacitor C. As shown in Fig. 2(b), the conductance
dynamics f;;(t — t;“) can be extended to a rise time 71 and
fall time 75 through convolution. This could be accomplished
by driving the source of the pMOS with a sequence of pulses.
The complete dynamical conductance-based synapse circuit
implementation is shown in Fig. 3. The circuit is compact,
requiring only 3 transistors to implement.

V. CHARACTERIZATION

To verify the conductance dynamics, we performed
transistor-level simulations (using Spectre and parameters of a
0.13pm CMOS process) of the synapse circuit driven by a train
of presynaptic impulses, modulated with three different pulse
widths, with relative magnitudes 1, 3, and 5, emulating the
effect of three time-multiplexed pooled synapses. The circuit
output in response to the sequence of input synaptic events is
shown in Fig. 4.

To verify the linearity of postsynaptic conductance in presy-
naptic activation, we studied the dependence of the conduc-
tance time profile as a function of pulse width and pulse
interval. We observed the step in conductance Ag for a train
of pulses at variable pulse intervals, for four different values of
pulse width with relative magnitudes 1, 3, 5, and 7 as shown
in Fig. 5. The four distinct and compact groups for each of
the four different activation widths indicate the linearity of the
conductance according to the convolution model (13) and (14).
Furthermore, the centers of the clusters for each of the different
activation widths are colinear through the origin, confirming
linearity in input pulse width.

VI. CONCLUSION

We have formulated a dynamical conductance-based
synapse cell in a compact circuit design. Circuit simulations
verify log-domain implementation as well as an output mag-
nitude scaled to the input conductance strength. The circuit

implementation is compact, requiring only 3 transistors. This
small footprint, coupled with the low-power subthreshold
design, make this design a suitable candidate for large-scale
implementation of synaptic arrays in addressable neuromor-
phic systems, with reconfigurable synaptic connectivity as well
as individually selectable synaptic dynamics.
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