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A B S T R A C T

Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). Fluctuations in E:I balance have
been shown to influence neural computation, working memory, and information flow, while more drastic shifts
and aberrant E:I patterns are implicated in numerous neurological and psychiatric disorders. Current methods for
measuring E:I dynamics require invasive procedures that are difficult to perform in behaving animals, and nearly
impossible in humans. This has limited the ability to examine the full impact that E:I shifts have in cognition and
disease. In this study, we develop a computational model to show that E:I changes can be estimated from the
power law exponent (slope) of the electrophysiological power spectrum. Predictions from the model are validated
in published data from two species (rats and macaques). We find that reducing E:I ratio via the administration of
general anesthetic in macaques results in steeper power spectra, tracking conscious state over time. This causal
result is supported by inference from known anatomical E:I changes across the depth of rat hippocampus, as well
as oscillatory theta-modulated dynamic shifts in E:I. Our results provide evidence that E:I ratio may be inferred
from electrophysiological recordings at many spatial scales, ranging from the local field potential to surface
electrocorticography. This simple method for estimating E:I ratio—one that can be applied retrospectively to
existing data—removes a major hurdle in understanding a currently difficult to measure, yet fundamental, aspect
of neural computation.

1. Introduction

Neurons are constantly bombarded with spontaneous synaptic inputs.
This state of fluctuating activity is referred to as the high-conductance
state (Destexhe et al., 2003), and gives rise to the asynchronous, irreg-
ular (Poisson-like) firing observed in vivo (Destexhe et al., 2001). In this
state, neural circuits sit in a balance between synaptic excitation (E) and
inhibition (I), typically consisting of fast glutamate and slower GABA
inputs, respectively, where inhibition is two to six times the strength of
excitation (Alvarez and Destexhe, 2004; Xue et al., 2014). Physiologi-
cally, the balance of E:I interaction is essential for neuronal homeostasis
(Turrigiano and Nelson, 2004) and the formation of neural oscillations
(Atallah and Scanziani, 2009). Computationally, E:I balance allows for
efficient information transmission and gating (Salinas and Sejnowski,
2001; Vogels and Abbott, 2009), network computation (Mari~no et al.,
2005), and working memory maintenance (Lim and Goldman, 2013).
Conversely, an imbalance between excitation and inhibition, during key
developmental periods or tonically thereafter, is implicated in

neurological and psychiatric disorders such as epilepsy (Gonz!alez-Ram-
írez et al., 2015; Symonds, 1959), schizophrenia (Uhlhaas and Singer,
2010), and autism (Dani et al., 2005; Mariani et al., 2015; Rubenstein
and Merzenich, 2003), as well as impairments in information processing
and social exploration (Yizhar et al., 2011).

Given such a state of intricate balance and its profound consequences
when disturbed, quantifying the E:I ratio could aid in better character-
izing the functional state of the brain. Existing methods for estimating E:I
ratio focus predominantly on interrogation of precisely selected cells,
either through identification of excitatory and inhibitory neurons based
on extracellular action potential waveforms (Peyrache et al., 2012), or by
intracellular voltage-clamp recordings to measure synaptic currents
(Monier et al., 2008), often combined with pharmacological or opto-
genetic manipulations (Reinhold et al., 2015; Xue et al., 2014). These
methods are invasive and are restricted to small populations of cells,
making them difficult to apply clinically and to in vivo population-level
analyses critical for understanding neural network functioning. Other
methods, such as magnetic resonance spectroscopy (Henry et al., 2011)
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and dynamic causal modeling (Legon et al., 2015), are able to provide
greater spatial coverage, enabling the sampling of E:I ratio across the
brain. However, this gain comes at a cost of temporal resolution –
requiring several minutes of data for a single snapshot – and are based on
restrictive connectivity assumptions.

Here, we aim to address this important gap in methodology to mea-
sure E:I ratio with broad population coverage and fine temporal resolu-
tion. Two recent lines of modeling workmotivate our starting hypothesis.
First, it has been shown that synaptic input fluctuations during the high
conductance state can be accurately modeled by a summation of two
stationary stochastic processes representing excitatory and inhibitory
inputs (Alvarez and Destexhe, 2004). These inputs have different rates of
decay, corresponding to a faster AMPA current and a slower GABAA
current, which can be readily differentiated in the frequency domain and
computationally inferred from single membrane voltage traces (Pos-
pischil et al., 2009, Fig. 1B). Second, population-level neural field re-
cordings, such as the local field potential (LFP) and electrocorticography
(ECoG), have been shown to be primarily dominated by postsynaptic
currents (PSC) across large populations (Buzs!aki et al., 2012; Mazzoni
et al., 2015; Miller et al., 2009). Additionally, recent work by (Haider
et al., 2016) observed tight coupling between the LFP and synaptic inputs
in the time domain. Thus, we combine these two findings and reason that
changes in the relative contribution between excitatory and inhibitory
synaptic currents must also be reflected in the field potential, and in
particular, in the frequency domain representation (power spectral
density, or PSD) of LFP and ECoG recordings. In this work, we derive a
straightforward metric that closely tracks E:I ratio via computational

modeling, and demonstrate its empirical validity by reanalyzing publi-
cally available databases from two different mammalian species. Spe-
cifically, we test the hypotheses that anatomical and theta oscillation-
modulated changes in excitation and inhibition in the rat hippocampus
can be inferred from CA1 local field potentials, and that anesthesia-
induced global inhibition is reflected in macaque cortical
electrocorticography.

2. Materials & methods

2.1. LFP simulation

We simulate local field potentials under the high conductance state
(Alvarez and Destexhe, 2004), with the assumption that the LFP is a
linear summation of total excitatory and inhibitory currents (Mazzoni
et al., 2015). Poisson spike trains from one excitatory and one inhibitory
population are generated by integrating interspike intervals (ISI) drawn
from independent exponential distributions, with specified mean rate
parameter (Fig. 1A). Each spike train is convolved with their respective
conductance profiles, which are modeled as a difference-of-exponentials
defined by the rise and decay time constants of AMPA and GABAA re-
ceptors (Eq. (1), Fig. 1B). Aggregate values for synaptic constants are
taken from CNRGlab @ UWaterloo (see Neurotransmitter Time Constants
in Ref; Table 1). The two resulting time series represent total excitatory
(gE) and inhibitory (gI) conductances, respectively (Fig. 1C). E:I ratio is
defined as the ratio of mean excitatory conductance to mean inhibitory
conductance over the simulation time, and specific E:I ratios are achieved

Fig. 1. E:I ratio correlates with PSD slope in simulation. (A) Model schematic: an “LFP population” receives input from two Poisson populations, one excitatory and one inhibitory. (B)
AMPA and GABAA conductance profiles follow a difference-of-exponentials with different rise and decay time constants. (C) Example time trace of simulated total synaptic currents (top)
and LFP (bottom). (D) PSDs of simulated signals in (C). Note power law decays in current-PSDs that begin at different frequencies. (E) Increasing E:I ratio from 1:6 to 1:2 causes a rotation,
producing a flatter PSD. (F) E:I ratio is positively correlated with PSD slope between 30 and 50 Hz. (G) Positive rank correlations between E:I ratio and PSD slope diminish with increasing
frequency of fitting window, up to 100 Hz.
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by multiplying the inhibitory conductance by a constant, such that mean
gI is 2–6 times mean gE. To calculate current, conductances are multiplied
by the difference between resting potential (!65 mV) and AMPA and
GABAA reversal potential, respectively. Local field potential (LFP),
finally, is computed as the summation of the total excitatory and inhib-
itory current. All simulation parameters are specified in Table 1. Total
LFP power is normalized to unity for each E:I ratio.

Difference-of-exponential PSC in time domain

PSCðtÞ¼C
!
! e

!t
τrise þ e

!t
τdecay

"
;

C : amplitude normalization constant
(1)

2.2. Power spectral density (PSD)

For all time series data (simulated and recorded LFP, ECoG), the PSD
is estimated by computing the median of the square magnitude of the
sliding window (short-time) Fourier transform (STFT). The median was
used instead of the mean (Welch's method) to account for the non-
Gaussian distribution of spectral data, as well as to eliminate the con-
tributions of extreme outliers. All STFT are computed with a window
length of 1 s (2-s for CA1 data), and an overlap length of 0.25 s. A
hamming window of corresponding length is applied prior to taking
the FFT.

2.3. 1/f slope fitting

To compute the 1/f power law exponent (log-log slope), we use robust
linear regression (MATLAB robustfit.m) to find the slope for the line of
best fit over specified frequency ranges of the PSD (30–50 Hz, 40–60 Hz
for macaque ECoG due to the prescence of oscillations near 30 Hz)
(Eq. (2)).

Log-Log Linear Fit Parameter over Empirical PSD

argmin
b;χ

½log10PSD! ðb þ χlog10FÞ ';

F 2 ½30; 50' or ½40; 60'
(2)

2.4. Hippocampal LFP and CA1 depth analysis

LFP data (1250 Hz sampling rate) is recorded in stratum pyramidale of
CA1 via 4 to 8 shank electrodes (200 μm inter-shank distance), with 8
electrodes (160 μm2 area) along the depth of each shank (20-μm
spacing), perpendicular to the pyramidal cell body layer (Mizuseki et al.,
2009). PSD is computed for each electrode as specified above, and 1/f
slope extracted. As in Mizuseki et al. (2011), we align the shanks such
that the electrode with the maximal ripple power (150–250 Hz) is set to
position 0, the middle of stratum pyramidale. Other electrodes are verti-
cally translated accordingly. This procedure is repeated for all shanks in
every recording (4 rats, 20 sessions total), resulting in slope estimates
spanning a depth of 280 μm, centered on the pyramidal layer. AMPA and
GABAA synapse densities are adapted from (Megías et al., 2001), for
proximal stratum oriens and stratum radiatum dendrites, and smoothed
with a 5-point Gaussian window to produce 15 data points at positions
equivalent to LFP electrodes. Spearman correlation is computed by

pooling slope values at the same depth across all sessions and all rats.

2.5. Multivariate regression model

Since the synaptic density estimates for E and I are independent but
correlated measurements, and E:I ratio is dependent on both previous
measures, we built a multivariate regression model to better delineate
contributions from the synaptic variables. Combinations of E, I, and E:I
ratio were used as predictors, and slope as the predicted variable, and we
compute model coefficient, significance, and ordinary and adjusted R2

values (MATLAB, LinearModel.fit). In addition, bootstrap analysis was
performed for each predictor combination (custom Python code),
wherein 25 subsamples were randomly selected from the dataset and a
regression model was built to compute one adjusted R2 value for the
subsampled model. This was repeated 500 times to build a distribution of
adjusted R2 values for each model (predictor combination), and model
fitness was compared using paired-samples t-test.

2.6. Theta phase-modulated slope

Theta oscillation is first isolated with a FIR bandpass filter 5–12 Hz,
(EEGLAB, eegfilt.m). Theta phase is computed as the complex phase angle
of the Hilbert transform of the theta oscillation. Segments of theta phase
are categorized as peak [!π/2 to π/2, through 0] or trough [π/2 to 3π/2,
through π]. Each corresponding segment in the raw data (~75 samples) is
then labeled as peak or trough, Hamming-windowed, and padded to
1250 samples. Average PSD for each phase category is computed as the
median of all windowed FFT of the data segments of that category. 1/f
slope is then fit to the average PSDs. Per-channel significance statistics
are calculated by fitting 1/f slope to each individual cycle STFT for each
channel and compared using two-sample t-test. To avoid power
contamination in the short-time window estimates from observed beta
oscillation, LFP data is notch filtered between 15 and 25 Hz. All results do
not change when not filtered for beta, hence are not presented below.

2.7. Macaque ECoG during anesthesia

ECoG data was collected from 2 macaque monkeys during rest, de-
livery of anesthesia (propofol, 5 & 5.2 mg/kg), and recovery (Yanagawa
et al., 2013). PSD was computed for all ECoG channels (n¼ 128) for each
experimental condition and fitted for 1/f slope. Due to clear gamma
oscillation near 30 Hz biasing slope estimates, we fit over 40–60 Hz to
avoid oscillatory contamination. We then compared slope fit differences
at each electrode between conditions (paired-samples t-test). Time
resolved slope fit was achieved by computing sliding window spectra
(absolute value squared of FFT) throughout the duration of the recording
(1 s window, 0.25 s step), and a slope estimate was computed for each
window. A 15-s median filter was applied to smooth the slope time series
plot for Fig. 4D.

Simulation and analysis code can be found at https://github.com/
voytekresearch/EISlope.

3. Results

3.1. E:I ratio drives 1/f changes in simulation

To model LFP under the high conductance state, we simulate an
efferent “LFP” population receiving independent Poissonic spike trains
from an excitatory and an inhibitory population, as detailed in the
Methods. In the frequency domain, we observe that the power spectral
density of the LFP (LFP-PSD) follows a decaying (1/f) power law for
frequencies past 20 Hz (negatively linear in log-log plot), which directly
results from adding the two current components, both following power
law decays (Fig. 1D). Note that the current-PSDs begin decaying at
different frequencies, due to the different rise and decay time constants of
AMPA and GABAA conductance profiles, which have been previously

Table 1
LFP simulation parameters.

Parameter Value

Population Firing Rate (E, I) 2 Hz, 5 Hz
Population Size (E, I) 8000, 2000
Resting Membrane Potential !65 mV
Reversal Potential (AMPA, GABAA) 0 mV, !80 mV
Conductance Rise Time (AMPA, GABAA) 0.1 ms, 0.5 ms
Conductance Decay Time (AMPA, GABAA) 2 ms, 10 ms
E:I Ratio 1:2 to 1:6
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observed in intracellular models of the balanced, high conductance state
(Destexhe and Rudolph, 2004).

By changing the relative contributions of excitation and inhibition
(E:I ratio), we shift the frequency at which the current-PSDs cross over,
which in turn produces different LFP-PSD slopes (power law exponent) in
the intermediate frequency range (Fig. 1E). To quantify this relationship,
we vary E:I ratio from 1:2 to 1:6, and observe that LFP-PSD slope between
30 and 50 Hz positively correlates with E:I ratio (r ¼ 0.55, p < 0.01;
Fig. 1F). The change in slope is restricted to only the low-to-intermediate
frequency ranges (below 100 Hz), as we observe a steady decline in
correlation between E:I ratio and PSD slope when slope is fitted across
shifting, 20-Hz wide frequency windows (Fig. 1G). For subsequent slope
analyses, we use a 20-Hz window of the lowest possible frequencies that
are above visible oscillatory peaks in the PSD, as a clear drop in corre-
lation is observed when a narrowband oscillation, such as beta
(15–25 Hz), is present. Additionally, we avoid high frequency regions
because action potentials and firing rate changes have been shown to
alter high gamma power at frequencies as low as 50 Hz (Manning et al.,
2009; Miller et al., 2007; Ray and Maunsell, 2011). In summary, our
forward LFPmodel suggests that E:I ratio is monotonically related to LFP-
PSD slope in a range between 30 and 70 Hz, when uncorrupted by
oscillatory peaks, and that increasing E:I ratio increases (flattens)
PSD slope.

3.2. Depth-varying synapse density in rat CA1

To test the relationship between E:I ratio and PSD slope empirically,
we first take advantage of the fact that excitatory and inhibitory synapse

densities vary along the pyramidal dendrites in the CA1 region of the rat
hippocampus (Megías et al., 2001). Given the results of the above
modeling experiment, we ask: can changes in the ratio of excitatory to
inhibitory synapse density be captured by changes in PSD slope,
measured along the depth of CA1? Shank recordings are obtained from
CRCNS data portal (Mizuseki et al., 2009), sampling LFP at evenly spaced
electrodes across a depth of 280 μm centered (post hoc, see Methods) on
the pyramidal cell layer in CA1 (Fig. 2A). PSDs are computed using data
from entire recording sessions of open field foraging (Fig. 2B). PSD slopes
are then fitted between 30 and 50 Hz to arrive at a slope profile that
varied across depth (Fig. 2C). To compute E:I ratio, we adapt synapse
density values from (Megías et al., 2001) and spatially smooth it to
produce data points at equivalent LFP electrode depths (Fig. 2D).

We find that PSD slope across depth is significantly correlated with
the AMPA to GABAA synapse ratio (Spearman's ρ ¼ 0.23, p < 10!5),
corroborating our a priori simulation results (Fig. 2E). Interestingly,

Fig. 2. LFP-PSD slope varies with E:I synapse density ratio in rat CA1. (A)Example shank spanning across CA1 (rad: stratum radiatum; pyr: stratum pyramidale; or: stratum oriens; adapted
from (Mizuseki et al., 2011)). (B) Example PSDs computed from electrodes along one recording shank. (C) Aggregate slope profile across depth, centered to the middle of pyramidal layer
(0 μm) (horizontal bars denote standard deviation). (D) Excitatory (AMPA) and inhibitory (GABAA) synapse density varies across CA1 depth. (E and F) LFP-PSD slope correlates positively
with E:I synapse density ratio (E) and negatively with GABAA density (F) (vertical bars denote standard deviation).

Table 2
Multivariate Linear Model Coefficients and R2 for Slope vs. E, I, and E:I Ratio. N/A indicates
exclusion of predictor in model.

Model Coefficients R2

Constant E I E:I ordinary adjusted

E !1.985 0.085 N/A N/A 0.027 0.026
I !1.589 N/A !0.451 N/A 0.223 0.222
E:I !1.861 N/A N/A 0.116 0.073 0.072
E & I !1.460 !0.089 !0.548 N/A 0.243 0.241
E & E:I !1.727 !0.128 N/A 0.208 0.090 0.088
I & E:I !1.534 N/A !0.590 !0.084 0.240 0.238
E, I & E:I !1.474 !0.065 !0.575 !0.032 0.244 0.241
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inhibitory synapse density alone correlates more strongly with PSD slope
(Spearman's ρ ¼ !0.41, p < 10!5; Fig. 2F). To further dissect the
covariation among the predictor variables, we create multivariate linear
models regressing for slope, using every combination of excitatory den-
sity, inhibitory density, and E:I density ratio (Table 2). We find that each
variable alone produces models that are significantly better than null
(constant-only) and with coefficients in the direction expected (positive
for E, E:I ratio; negative for I), where the full model with all 3 predictors
achieves the highest adjusted R2. However, inhibitory density in any
combination produces the largest increase in adjusted R2. To assess
whether model differences are significant, we performed bootstrap
validation by building a distribution of adjusted R2 values from sub-
sampling 25 random samples of the data 500 times, then comparing the
distributions with paired-sample t-tests. We find that, while I improves
model prediction the most, adding either E or E:I ratio significantly im-
proves adjusted R2 compared to I-only (I < [I & E], p ¼ 0.0003; I < [I &
E:I], p ¼ 0.005). Thus, we find that PSD slope significantly correlates
with E:I ratio in the rat CA1, as measured by synapse density, though the
effect is strongly driven by changes in inhibition.

3.3. Theta-modulated cycles of excitation & inhibition

If LFP-PSD slope indeed tracks changes in the balance between
excitation and inhibition, it should not only do so statically across space,
but dynamically across time as well. Theta oscillation in the rat hippo-
campus reflects periodic bouts of excitation and inhibition (Buzs!aki,

2002). Therefore, we posit that PSD slope would be steeper during the
inhibitory phase of theta, and flatter during the excitatory phase. To test
this, we use the same CA1 dataset as above, and divide each LFP
recording into temporal segments of peak and trough based on theta
phase (Fig. 3A; see Methods). Fast Fourier Transforms (FFTs) are
computed from these short segments and averaged, showing distinctive
slope differences (Fig. 3B).

We find that, across all channels, PSD slope (30–50 Hz) during theta
peaks were significantly more negative (steeper) than during theta
troughs (paired t-test, p < 10!5; Fig. 3C and D). On a single channel basis,
we fit linear slopes to each short segment FFT, and found 844 out of 946
channels with significantly flatter slopes during troughs (2-sample t-test,
p < 10!5). From this we infer that theta troughs correspond to periods of
excitation, which agrees with the biophysical view that negativity in the
hippocampal LFP is due to depolarization of membrane potential
(Buzs!aki et al., 2012). Additionally, we observe that high-frequency
(140–230 Hz) power – a surrogate for spiking activity and ripples in
the hippocampus (Schomburg et al., 2012) – is higher during theta
troughs than peaks, further indicating the correspondence between LFP
troughs and windows of excitation (Fig. 3E). Taken together, we find
evidence that PSD slope can dynamically track periods of excitation and
inhibition facilitated by theta oscillations in the rat hippocampus.

3.4. Propofol-induced increase in GABAA-mediated inhibition

Finally, having shown correlative evidence supporting the hypothesis,

Fig. 3. PSD slope tracks theta-modulated changes in E:I balance. (A) Schematic of how LFP segments are divided and binned based on theta phase. (B) Example PSD of a single channel
over the entire recording (black, notch filter applied in beta range), and averages across all troughs (blue) and peaks (red) only. (C) Distribution of slope values shifts rightward (more
positive) during theta troughs. Inset: distribution of difference in slope (trough minus peak) lies significantly above 0 (vertical red line). (D) Individual-channel comparison of slopes during
theta troughs vs. peaks, each channel represented by a pair of connected dots showing nearly universally more negative slope during peaks compared to troughs (* p < 10!5). (E) Dis-
tribution of difference (trough minus peak) in high frequency activity (HFA, 140–230 Hz) in all channels lies significantly above 0 (vertical red line), indicating an increase in high gamma
power from peak to trough.
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we aim to further test the simulation predictions through causal manip-
ulations. Propofol is a general anesthetic that positively modulates the
effect of GABA at GABAA receptors (Concas et al., 1991), effectively
decreasing the global E:I ratio. Thus, we query another openly available
dataset (http://www.neurotycho.org), in which electrocorticogram
(ECoG) from macaques was recorded throughout sedation, to investigate
whether ECoG-PSD slope reflects a decrease in E:I ratio induced via
pharmacological manipulation (Yanagawa et al., 2013). PSDs are
computed for all 128 recording channels per session, for awake resting
and anesthetized conditions (Fig. 4A). We observe a significant decrease
in PSD slope after onset of anesthesia for all 4 recording sessions (paired t-
test, all p < 10!5, Fig. 4B). The slope decrease is strongest in frontal and
temporal electrodes (Fig. 4C), consistent with previous neuroimaging
studies spatially locating propofol's region of effect (Zhang et al., 2010).
Interestingly, electrodes in the precuneus region show increases in PSD
slope during anesthesia instead, suggesting a gain of activity, perhaps due
to its situation as a critical, core node within the default mode network
(Utevsky et al., 2014). Finally, to calculate temporally precise de-
marcations of consciousness state changes, we estimate PSD slope in a
time-resolved fashion byfitting over 1-s long sliding FFTs across the entire
recording session. We find that PSD slope dynamically tracks the stability
of brain state during awake resting, followed by a rapid push towards
inhibition after injection that is consistent with propofol's time of onset
(15–30 s), aswell as the slow rebalancing during recovery fromanesthesia
(Fig. 4D). Unexpectedly, we also observe a rapid increase in slope, back to
resting-state values, following the initial gain in inhibition, suggesting a

global re-normalization process. Overall, we demonstrate that ECoG-PSD
slope dynamically tracks propofol-induced gain in inhibition consistently
across brain regions and time.

4. Discussion

Guided by predictions from our computational modeling results, our
analyses of existing datasets from two mammalian species with different
experimental manipulations and recording equipment demonstrate that
information about local E:I ratio can be captured from the spectral rep-
resentation of electrophysiological signals. Specifically, we show that
LFP-PSD slope correlates with both anatomical E:I ratio—represented by
changes in synaptic density ratio across CA1 layers—and dynamic E:I
ratio as modulated by theta oscillation in the rat hippocampus. In addi-
tion, ECoG-PSD slope tracks the increase of inhibition in non-human
primate brains induced by propofol, across brain regions and time.

Evidence that spiking can be partially extracted from the broadband
(2–250 Hz) or high gamma (>80 Hz) spectral power of meso-/macro-
scale neural recordings (LFP, ECoG) provided an important link between
local neuronal activity and the LFP, opening numerous avenues of
research (Manning et al., 2009; Miller et al., 2009; Mukamel et al., 2005).
In contrast to the copious literature regarding broadband/high gamma,
much of the work on E:I balance has been limited to intracellular re-
cordings, methods with limited temporal resolution, multiple single-unit
recordings, or optogenetic manipulations. Given the broad and important
role that E:I balance plays in neural computation, information transfer,

Fig. 4. ECoG-PSD slope tracks propofol-induced global inhibition. (A) Average PSD across all channels during resting (black) and anesthetized (red) show distinct slope differences beyond
30 Hz. (B) Significant slope decrease is observed during anesthesia (pair t-test, * p < 10!5). (C) Slope decrease is observed across most of cortex, most prominently in the frontal and
temporal areas. Slope increase is observed exclusively in the precuneus. (D) Time-resolved estimate of PSD slope tracks, with fine temporal resolution, changes in brain state from awake to
anesthetized (Anes), and as well as a slow recovery to baseline rest levels (marked by dashed blue line). Grey, unsmoothed; red, 15 s smoothing window applied.
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and oscillatory and homeostatic mechanisms, the inability to easily
measure E:I parameters at a large scale has hindered basic and clinical
research. To this end, we develop a simple metric that can be applied at
different intracranial recording scales, which can potentially be extended
to extracranial EEG recordings, with profound implications for clinical
and basic science research.

4.1. Limitations

There are several caveats in this study worth noting. Most notably is
the underlying assumption that LFP and ECoG are solely composed of
AMPA and GABAA synaptic currents. In reality, LFP reflects the integra-
tion of all ionic currents, including action potentials (Schomburg et al.,
2012) – which shift the broadband/high gamma frequencies (Manning
et al., 2009; Miller et al., 2009; Mukamel et al., 2005) – and slow glial
currents (Buzs!aki et al., 2012). The computational model also makes
several assumptions, such as homogeneous-rate spiking and constant PSC
waveforms, as well as excluding biophysical details like 3D arrangement
of the spiking population. These factors will certainly influence the
overall shape of the PSD, although it was shown that a linear combination
of excitatory and inhibitory synaptic currents best approximates
neuronal networks with 3D cellular morphology (Mazzoni et al., 2015).
Additionally, such models have been used to capture the aforementioned
broadband/high gamma relationship to spiking activity (Miller et al.,
2009), a phenomenon that is also reproduced in our model through an
overall (and equivalent) increase in firing rate from both excitatory and
inhibitory populations.

Furthermore, although our computational model makes predictions
that EI balance can be captured from the 1/f slope, we emphasize that our
model assumes a linear independent summation of E and I currents that
do not account for the fast-coupling or recurrent nature of cortical cir-
cuits. This assumption rests on the high-conductance state of cortical
circuits over long recording lengths, effectively washing out stimulus-
specific frequency response. So while our simple slope-fitting model
captures significant variance in E:I ratio, the fact that the feedback
engagement of E and I makes these two contributions inextricably linked
suggests that more sophisticated models would perform better when the
superposition assumption does not satisfy. In particular, previous works
have shown that the amplitude of the power spectrum depends critically
on this interaction in similar frequency ranges used in our analyses to
infer E:I from the spectral slope, when considering time-inhomogeneous
stimuli (Brunel and Wang, 2003; Mazzoni et al., 2008). Some methods
have been proposed to estimate network parameters (including E:I ratio)
when recurrent E:I interactions are taken into account (Barbieri et al.,
2014). These methods are more complicated than, but complementary
to, the model we propose, and they may be preferable when considering
non-stationary, stimulus-evoked responses.

Finally, because non-neural sources such as the amplifier, reference
scheme, and ambient noise can affect spectral slope, slope-inferred E:I
ratio should only be interpreted in the context of a comparative experi-
mental design in which the relative E:I ratio can be interrogated in
response to experimental manipulations or population differences, rather
than ascribing meaning to the exact value of the slope itself. In particular,
it has been shown that different referencing schemes, such as bipolar vs.
common-average, have profound effects on the measured PSD slope
(Shirhatti et al., 2016). In addition, we observe that PSD slope of cortical
ECoG is much more negative than that of CA1 LFP recordings, which, in
turn, is lower than slopes produced by our LFP model, suggesting that
anatomical differences and dendritic integration process all contribute to
the measured slope (Lind!en et al., 2010; Pettersen et al., 2014).

4.2. Power law (1/f) decay in neural recordings

Power law exponent (slope) changes of the PSD (“rotation”) have
recently been observed in several empirical studies, linking it to changes
in global awake and sleep states (He et al., 2010), age-related cognitive

decline (Voytek and Knight, 2015; Voytek et al., 2015; Waschke et al.,
2017) and visuomotor task-related activation (Podvalny et al., 2015).
The 1/f power law nature of neural recordings has been interpreted
within a self-organized criticality framework (Bak et al., 1987; He et al.,
2010), with general anesthesia argued to alter the criticality of self-
organized brain networks (Alonso et al., 2014). It has been shown,
however, that power law statistics do not imply criticality in neuronal
networks (Touboul and Destexhe, 2010), and the finding that neuronal
activity exhibit power law statistics at all has been questioned (B!edard
et al., 2006). Furthermore, many previous reports ignore or overlook the
fact that PSD of neural recordings are not 1/f at all frequencies and do not
have a constant power law exponent – both requirements in the self-
organized criticality framework. Instead, LFP and ECoG PSDs often
have relatively constant spectral power at low frequencies between 1 and
10 Hz, as well as different power law exponents at different frequencies.
For example, ultra-low frequency region (<1 Hz) was posited to exhibit
1/f decay due to recurrent network activity (Chaudhuri et al., 2016), and
power law in the very high frequency (>200 Hz) was shown to be a result
of stochastic fluctuations in ion channels (Diba et al., 2004).

Our model and results reconcile the 1/f and low-frequency plateau
observation by the simple fact that the spectral representation of synaptic
currents (Lorentzian) takes on that shape (Fig. 1D), as others have noted
before (Destexhe and Rudolph, 2004). In fact, previous works have
modeled the Lorentzian form as due to the network propagation time
constant of a recurrent excitatory population (Freeman and Zhai, 2009)
and excitatory synaptic time constants coupled with dendritic filtering
(Miller et al., 2009). However, recent evidence suggests that synaptic
inhibition also plays a significant role in shaping the LFP time series
(Telenczuk et al., 2017). As such, we infer that the balance between
excitation and inhibition could be extracted from the extracellular field
potential, though not from the polarity of the time series signal itself.
Hence, we propose that slope changes in a particular frequency region
(30–70 Hz) correspond to changes in E:I balance, while making no claims
about other frequency regions, and our multivariate model in the CA1
analysis reveals that both inhibition alone and E:I ratio predict spectral
slope better than excitation alone. Altogether, it follows that different
processes may give rise to power law phenomenon at different temporal
scales, hence different frequency ranges (Chaudhuri et al., 2016). Our
observations here do not negate the criticality perspective, but reframes
it in E:I terms, wherein constant E:I balancing is crucial for maintaining
neuronal excitability at a critical state (Xue et al., 2014).

In summary, our results challenge the view that the relative contri-
butions of EPSCs and IPSCs to electrophysiological signals cannot be
readily inferred (Yizhar et al., 2011). We show that this limitation can be
overcome using relatively simple metrics derived from meso- and macro-
scale neural recordings, and that it can be easily applied retrospectively
to existing data, opening new domains of inquiry and allowing for
reanalyses within an E:I framework. Furthermore, our results provide
insights into several ongoing research domains, such as possible con-
tributors to the 1/f power law phenomenon often observed in field po-
tential power spectra. By providing a new way for decoding the
physiological information of the aggregate field potential, we can query
brain states in novel ways, helping close the gap between cellular and
cognitive neuroscience and increasing our ability to relate fundamental
brain processes to behaviour and cognition as a result.
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