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SUMMARY

Structural and transcriptional changes during early
brain maturation follow fixed developmental pro-
grams defined by genetics. However, whether this
is true for functional network activity remains un-
known, primarily due to experimental inaccessibility
of the initial stages of the living human brain. Here,
we developed human cortical organoids that dynam-
ically change cellular populations during maturation
and exhibited consistent increases in electrical
activity over the span of several months. The sponta-
neous network formation displayed periodic and
regular oscillatory events that were dependent on
glutamatergic and GABAergic signaling. The oscilla-
tory activity transitioned to more spatiotemporally
irregular patterns, and synchronous network events
resembled features similar to those observed in pre-
term human electroencephalography. These results
show that the development of structured network
activity in a human neocortex model may follow
stable genetic programming. Our approach provides
opportunities for investigating and manipulating the
role of network activity in the developing human
cortex.

INTRODUCTION

Diverse and hierarchical cellular networks develop into circuits

with patterns of functional spatiotemporal activity to form the
human brain. Neural oscillations, a prominent, rhythmic brain

signal found across species, robustly track behavioral and

disease states and have long been leveraged in systems

neuroscience due to their ubiquity and accessibility (Buzsáki

and Draguhn, 2004; de Hemptinne et al., 2015; Fries, 2005; Hen-

riques and Davidson, 1991; Khan et al., 2013; Uhlhaas and

Singer, 2010). These complex network dynamics emerge early

in development and is unclear whether shaped exclusively by

biological programming prenatally (Blankenship and Feller,

2010; Johnson, 2001; Power et al., 2010). In vitro and in vivo

rodent studies have shown that a conserved repertoire of

organized network activity, such as traveling waves, giant depo-

larizing potentials, and early network oscillations, develops ac-

cording to a consistent timeline prior to and immediately after

birth (Allène et al., 2008; Khazipov and Luhmann, 2006; Uhlhaas

et al., 2010). However, due to an inability to interrogate the elec-

trophysiology of intact embryonic brains, it remains unknown

whether the same happens in humans. As a result, our knowl-

edge about human brain functional development rests upon

observations from nonhuman model systems.

Organoids generated from induced pluripotent stem cells

(iPSCs) have emerged as a scaled-down and three-dimensional

model of the human brain, mimicking various developmental

features at the cellular and molecular levels (Camp et al., 2015;

Cederquist et al., 2019; Giandomenico et al., 2019; Lancaster

and Knoblich, 2014; Lancaster et al., 2013; Luo et al., 2016; Ma-

riani et al., 2012; Paşca et al., 2015; Qian et al., 2016; Renner

et al., 2017; van de Leemput et al., 2014; Xiang et al., 2017,

2019). Despite recent advances in the understanding of their

cellular diversity, there is no evidence that these organoids

develop complex and functional neural network activity that

resembles early human brain formation (Birey et al., 2017; Gian-

domenico et al., 2019; Quadrato et al., 2017). Therefore,
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Figure 1. Cellular and Molecular Development of Human Cortical Organoids

(A) Overview of human neural network formation and dynamics evaluation using cortical organoids.

(B) Schematic of the protocol used to generate cortical organoids. Scale bar, 200 mm.

(legend continued on next page)
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researchers have not yet clearly determined whether brain orga-

noids are a suitable model for neural network dynamics (Kelava

and Lancaster, 2016; Paşca, 2018).

Here, we use human iPSCs to generate cortical organoids that

exhibit evolving cellular transcriptional profile and nested oscilla-

tory network dynamics over the span of several months. We

subsequently investigated the molecular basis of oscillatory ac-

tivity formation, maintenance, and temporal control. Finally, we

applied supervised machine learning with cross-validation to

evaluate the similarity between electrophysiological network ac-

tivity patterns of the in vitro model and human preterm neonatal

electroencephalogram (EEG). Our findings suggest that orga-

noidmodels are suitable for the investigation of the physiological

basis of network formation at early and late stages of the human

brain development. This prolonged evaluation of cortical orga-

noid activity expands our understanding of the emergence of

network-level neurodynamics in humans.

RESULTS

Generation of Functional Cortical Organoids
Despite the structural and transcriptional similarities between

brain organoids and the developing nervous system, the emer-

gence of higher level complex network activity comparable to

the living human brain remains largely untested (Figure 1A). To

investigate the formation of a functional network, we promoted

cortical specification by previously described protocols (Paşca

et al., 2015; Thomas et al., 2017; Yoon et al., 2019; Figure 1B;

see STAR Methods for details). At the beginning of differentia-

tion, an abundance of proliferative neural progenitor cells

(NPCs) (expressing Ki67, SOX2, and Nestin) that self-organized

into a polarized neuroepithelium-like structure was observed.

Similar to human cortical development in vivo, the proliferative

zone around a lumen delimited by b-catenin+ cells was sur-

rounded by progenitor cells. Progressively, the organoids

increased in size and in the proportion of mature neurons (ex-

pressing NeuN and MAP2) to ultimately develop into concentric

multilayer structures composed of NPCs, intermediate progeni-

tors (TBR2; also known as EOMES), and lower (CTIP2; also

known as BCL11B) and upper (SATB2) cortical layer neurons

(Figures 1C–1E and S1). The neurons exhibit dendritic protru-

sions and synaptic ultrastructure (Figures 1F and 1G). After

6 months, inhibitory neurons can also be observed (calretinin

[CR], also known as CALB2; GABAB; NKX2.1, also known as

TTF1; GABA; LHX6; somatostatin [SST]; and parvalbumin [PV];
(C) Organoid growth during different developmental stages.

(D) Representative immunostainings showing proliferating NPCs (Ki67 and Nestin

(GFAP), and GABAergic (CR) neurons over time. Scale bars, 50 mm.

(E) Population analysis of specific markers indicating stages of maturation and m

(F) Representative image of a pyramidal neuron; dendritic structures are observe

(G) Electron microscopy of synaptic ultrastructure in 4-month cortical organoids

(H) Uniform manifold approximation and projection (UMAP) plot of 15,990 cells fr

denote cells sampled from four different time points.

(I) UMAP plot of the integrated datasets colored by sevenmain cell clusters: red as

as intermediate progenitors; purple as progenitors; green blue as mitotic cells; a

(J) Separate UMAP plots of integrated data by different time points. Same color

(K) Dot plots showing cluster-specific gene expression across main cell clusters

(L) UMAP plots showing expression levels of cell-type-specific markers (see Figu

(M) Bar plots of proportion of cell types at individual time points.
Figures 1D and S1). Although the initial fraction of GFAP-positive

cells was less than 5%, this population increased to about 30%–

40% after 6 months of differentiation (Figures 1D and 1E).

To characterize the cellular diversity of cortical organoids dur-

ing development, we performed single-cell RNA-seq on 1-, 3-,

6-, and 10-month organoids (Figures 1H–1M and S1; Table

S1). We used unsupervised clustering on the combined dataset

of 15,990 cells to identify clusters and their relative abundance at

distinct time points. Based on the expression gene markers, we

combined smaller subclusters into five major cell classes:

progenitors; intermediate progenitors; glial cells; glutamatergic

neurons; and GABAergic neurons. Based on this annotation,

1-month organoids consisted of >70%progenitor cells (express-

ing SOX2 and PAX6; Figures 1J and 1M). At the 3- and 6-month

stage, cortical organoids comprised mainly glia (SLC1A3) and

glutamatergic neurons (GRIA2 and SNAP25; Figures 1J and

1M). The glial cells started with a small population and increased

to around 40%of cells present in the cortical organoids. Remain-

ing populations of progenitors (around 5%) and intermediate

progenitors (around 10%) were present throughout the matura-

tion. A fraction of glutamatergic neurons at the 3- and 6-month

time point expressed subunits of GABAergic receptors, such

as GABRB3 (Figure S1C). This expression of GABAergic recep-

tors predates the appearance of interneurons.

GABAergic neurons were mainly restricted to 6- to 10-month

organoids, as indicated by expression of GAD2 (also known as

GAD65), DLX1, and DLX5 (Figures 1J–1M, S1C, and S1D),

reaching around 15% of the total neuronal population after

10 months of maturation, consistent with its presence later in

the in vivo development (Uylings et al., 2002). The molecular pro-

file of GABAergic neurons was further evaluated by single-cell

transcriptomics (Figure S1E) and by the presence of protein

markers (Figure S1F). To demonstrate the biosynthesis of

GABA during the maturation process, we employed metabolo-

mics liquid chromatography coupled to mass spectrometry

(Gertsman et al., 2014). The neurotransmitter GABA was de-

tected in the culture media of cortical organoids after 6 months

of maturation (Figure S1G) in a physiologically relevant concen-

tration (Van Hove and Thomas, 2014). These results suggest the

presence of the basic components for the generation of a neural

network in a developing human cortical in vitro model.

Emergence of Nested Oscillatory Network Activity
In addition to the observed cellular diversity and expression of

synaptic markers, we interrogated the presence of functional
), lower (TBR1 and CTIP2) and upper (SATB2) cortical layer neurons, glial cells

ultiple neuronal subtypes. The data are shown as mean ± SEM (n = 8).

d in cells transduced with the SYN:EGFP reporter (scale bar, 5 mm).

(blue). Scale bar, 200 nm.

om integrating datasets on 1-, 3-, 6-, and 10-month cortical organoids. Colors

GABAergic neurons; orange as glutamatergic neurons; blue as glia cells; green

nd gray as others.

scheme used for main cell clusters is shown.

.

re S1 for additional markers).
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Figure 2. Oscillatory Network Dynamics in Long-Term Cortical Organoids

(A) Schematic of the organoid electrophysiological signal processing pipeline. Raw MEA data are analyzed as population spiking and LFP separately. Syn-

chronous network events are highlighted in yellow.

(B) Raster plot of network spiking activity after 1.5 and 8 months of maturation. A 3-s interval of activity over 5 channels is shown in the upper right corners.

(C) Cortical organoids show elevated and continuously increasing mean firing rate compared to 2Dmonolayer neurons (n = 8 for organoid cultures and n = 12 for

2D neurons). Inset: correlation of the firing rate vector over 12 weeks of differentiation (from 8 to 20) between pairs of cultures showing reduced variability among

organoid replicates.

(D) Temporal evolution of cortical organoid network activity. Detailed definitions and further parameters are presented in Figure S2.

(E) Time series of population spiking and LFP during network events in cortical organoid development. Each overlaid trace represents a single event during the

same recording session.

(F) The number of subpeaks during an event is maximized and stereotypical at 6 months, developing nonlinearly and following an inverted-U trajectory.

(G) Network variability, measured as the coefficient of variation of the inter-event interval, increases monotonically throughout development.

(legend continued on next page)
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network activity. Starting at a single cellular level, we used

whole-cell patch-clamp recording from 6-month cortical organo-

ids (Figures S2A–S2E). The action potential firing activity and the

voltage-dependent Na+ current were tetrodotoxin (TTX) sensi-

tive. Application of glutamate receptor antagonists (NBQX and

AP5) fully inhibited the spontaneous excitatory postsynaptic

currents recorded at �60 mV, confirming the presence of func-

tional excitatory neurons.

To further evaluate the cortical organoid functionality in a

mesoscopic level, we performed weekly extracellular recordings

of spontaneous electrical activity using multi-electrode arrays

(MEAs). Cortical organoids were plated per well in 8 wells of a

MEA plate containing 64 low-impedance (0.04 MU) platinum

microelectrodes with 30 mm of diameter spaced by 200 mm,

yielding a total of 512 channels. We separately analyzed sin-

gle-channel and population firing characteristics derived from

channel-wise spike times and the local field potential (LFP), a

measure of aggregate synaptic currents and other slow ionic

exchanges (Buzsáki et al., 2012; Figure 2A). The spikes were

defined by the event unit waveforms standard structure with

typical refractory periods and by pharmacological intervention.

These spikes from each channel do not represent putative sin-

gle-unit action potentials but represent multi-unit activity

(MUA). Because both the spatial and temporal resolution of

MEA sampling is sparse, single-unit spike trains were not iso-

lated, instead submitting channel-wise and whole-well activity

for further analysis rather than individual spike trains. Over the

course of 10 months, cortical organoids exhibited consistent in-

creases in electrical activity, as parametrized by channel-wise

firing rate, burst frequency, and synchrony (Figures 2B–2D and

S2F–S2I), which indicates a continually evolving neural network.

Additionally, the variability between replicates over 40 weeks of

differentiation was significantly lower compared to iPSC-derived

neurons in monolayer cultures (Figures 2C, inset, and S2J).

During individual recordings, cultures displayed a robust

pattern of activity, switching between long periods of quies-

cence and short bursts of spontaneous network-synchronized

spiking (hereafter referred to as ‘‘network events’’). These

network events were periodic (�0.05 Hz) but infrequent early in

development (�2 months), occurring roughly every 20 s and

decayed monotonically after the initial onset (Figure 2E). From

4 months onward, a secondary peak emerged 300–500 ms after

the initial network activation, leading to the presence of a nested

faster oscillatory (2 or 3 Hz) pattern up to 6months in culture (Fig-

ures 2F and S3A–S3F). Notably, this robust fast timescale nested

oscillation was not observed in 3D neurospheres, suggesting

that the spherical arrangement of neurons is insufficient for the

emergence of nested oscillations (Figures S3G–S3J). The regular

oscillatory activity during network events transitioned to stron-

ger, yet more variable, oscillations over time. To quantify this

network complexity, we tracked the regularity (coefficient of

variation of inter-event intervals [CV]) and the spatial and
(H) 1- to 4-Hz oscillatory power in the LFP increases up to the 25th week in cultu

straight line (dashed) over the aperiodic portion of the PSD and taken as the heig

(I) Pairwise correlation of LFP across all electrodes (coherence) within a well dur

(J) An example of sequential frames during a network event shows the spatial pr

The data shown in (C), (D), (F), (G), (H), and (I) are presented asmean ± SEM. *p < 0

and linear (G) regression.
temporal correlation between spontaneous network events.

The inter-event interval CV consistently increased over

10 months of differentiation (Figure 2G), from extremely regular

latencies (CV y 0) at 2 months to irregular, Poisson-like

(CV y 1) at 10 months. This indicates increased variability be-

tween consecutive network events initiation. Additionally, spatial

and temporal irregularity on a shorter timescale (within event)

also increased with development, suggesting a breakdown of

deterministic population dynamics from the onset of network

events.

Periodic oscillatory activity is often defined as a ‘‘bump’’ over

the characteristic 1/f background in the power spectral density

(PSD) of extracellular signals above and beyond the aperiodic

1/f signal (Buzsáki et al., 2013; Gao et al., 2017). In organoid

LFPs, we observed both prominent oscillatory peaks in the

low-frequency range (1–4 Hz) and in the aperiodic signal charac-

teristic of neural recordings (Ben-Ari, 2001; Voytek et al., 2015).

The development of oscillatory activity in cortical organoids over

time was quantified by computing the PSD for each LFP

recording (Figure 2H, inset). Oscillatory power in the delta range

(1–4 Hz) increased for up to 24 weeks in culture, tapering off

slightly in subsequent recordings and plateauing during the

last 10 weeks. This inverted-U trajectory reflects the network’s

initial acquisition of oscillatory modes at steady frequencies

and the dispersion of this regularity at later time points. The

LFP results reveal the development of the cortical organoid cul-

tures across different network states: from sparse activity with

extreme rigidity and regularity to one that acquires repetitive

and regular oscillatory patterns (Voytek and Knight, 2015), until

it finally reaches a stage of higher spatiotemporal complexity

and variability that is reminiscent of self-organized networks

(Tetzlaff et al., 2010; Figures 2I, 2J, and S3C–S3F).

Oscillatory Coordination of Neural Ensembles and Its
Synaptic Mechanisms
Oscillatory dynamics have been postulated to coordinate spiking

across neural ensembles. In the LFP and other mesoscopic brain

signals, this manifests as a phenomenon known as cross-fre-

quency phase-amplitude coupling (PAC) (Voytek and Knight,

2015), wherein the high-frequency content of the LFP is

entrained to the phase of slow oscillations (Manning et al.,

2009; Miller et al., 2007; Mukamel et al., 2005). In the cortical

organoids, we observed greater PAC between oscillatory delta

(1–4 Hz) and broadband gamma activity (100–400 Hz; see

STAR Methods) during network events compared to quiescent

periods (Figures 3A–3C). This broadband gamma is non-oscilla-

tory but has been shown to be an LFP surrogate of population

spiking (Manning et al., 2009; Miller et al., 2007).

We further evaluated the role of glutamatergic and GABAergic

synaptic transmission in forming oscillations by pharmacological

intervention. Organoid neural networks were susceptible to both

glutamate receptor antagonists (AP5 and CNQX; NMDA and
re and plateaus at 30 weeks. Inset: oscillatory power is calculated by fitting a

ht of narrow peaks rising above the linear fit.

ing network events initially increases and then decreases after 30 weeks.

opagation of wave spreading and then disappearing again after 100 ms.

.05; **p < 0.01; ***p < 0.001; unpaired Student’s t test (C), quadratic (F, H, and I)
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Figure 3. Cortical Organoid Serves as a

Model of Functional Oscillations and Their

Synaptic Mechanisms

(A–C) Phase-amplitude coupling is observed in

organoid LFP during network events.

(A) Example of raw LFP during a network event

decomposed into its low-frequency component

(1- to 4-Hz delta) and the amplitude envelope of

the high-frequency, broadband gamma compo-

nent (200–400 Hz). Analysis was repeated for

100–200 Hz with near identical effect size and

significance.

(B) Normalized gamma amplitude binned by delta

phase during network events (black) shows

greater modulation depth by low-frequency delta

than during non-event periods (red).

(C) Phase-amplitude coupling during network

events is significantly greater than non-event pe-

riods in all batches.

(D) Effect of selective drug treatments on neuronal

electrical activity in 6-month organoids. Repre-

sentative raster plots and burst measurements of

untreated and treated organoids are shown. The

pharmacological manipulation was performed

using cortical organoid plated on 4 MEA wells

(n = 4; cortical organoid culture for each treat-

ment). Scale bar, 20 s. Exposure to AP5 + CNQX,

baclofen, and muscimol reversibly extinguish the

network bursts (synchrony), and no changes were

promoted by bicuculline.

(E and F) Pharmacological perturbation of network

events (E) and oscillatory activity (F) during

network events in 6-month organoids. Pre and

post refer to before treatment administration and

after administration, respectively. Application of

bicuculline and picrotoxin increases the number of

network events, and CNQX + AP5 and baclofen

completely abolish synchronized network events.

Bicuculline blocks oscillatory network activity, but

not the network event itself. Data are shown as

mean ± SEM; unpaired Student’s t test.
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AMPA/kainate, respectively) and GABA receptor agonists

(muscimol, GABAA; baclofen, GABAB) by significantly reducing

the number of spike events and bursts, with a subsequent

extinction of synchronous activity. The electrical activity was

abolished in the presence of TTX (Figures 3D and 3E). Blockade

of GABAergic transmission by bicuculline increased the number

of network-synchronized events and did not affect peak popula-

tion firing rates but abolished nested 2-Hz oscillatory activity by

erasing subsequent reverberant peaks (Figure 3F).

Cortical Organoid Network Development Resembles
Some Preterm EEG Features
Despite emergence of complex oscillatory network activity in

organoids, it is unclear whether the spontaneous developmental

trajectory observed is representative of programmed early

neurodevelopment. Although network activity from cortical orga-

noids does not exhibit the full temporal complexity seen in

adults, the pattern of alternating periods of quiescence and

network-synchronized events resembles electrophysiological

signatures present in preterm human infant EEG. During trace
6 Cell Stem Cell 25, 1–12, October 3, 2019
discontinu (Tolonen et al., 2007), quiescent periods are

punctuated by high-amplitude oscillations (spontaneous activity

transients [SATs]) lasting a few seconds. Intervals of complete

quiescence disappear as infants become of term, and the EEG

is dominated by continuous and low-amplitude desynchronized

activity in adult brains (Figures 4A, S4A, and S4B).

Due to the inability to interrogate the electrophysiology of

intact human embryonic brains, we attempted to quantitatively

compare network activity in cortical organoids to preterm human

EEG. We analyzed a publicly available dataset of 101 serial EEG

recordings from 39 preterm infants ranging from 24 to 38 weeks

post-menstrual age (PMA): 567 data points total (Stevenson

et al., 2017). The dataset contains 23 precomputed features for

each EEG record, ranging from timing, rate, and variability of

SATs (or bursts), as well as spectral power in canonical oscilla-

tory bands (delta, theta, etc.; see Table S2 for full list of features).

We computed analogous features from each organoid LFP

recording when appropriate. It is important to note that the

biophysics of scalp EEG is drastically different from extracellular

field potential in the organoid, due to factors such as spatial



Figure 4. Cortical Organoid Network Dynamics Mimic Those of Premature Neonates after 28 Weeks of Maturation

(A) Representative LFP trace from cortical organoid, highlighting instances of network events (yellow). Comparable events between periods of quiescence

(discontinuous network dynamics) are shown in human preterm neonate EEG at 35 weeks gestational age, and a different pattern of continuous activity is

observed in adult EEG. SAT, spontaneous activity transient.

(B) Examples of analogous features in preterm neonate EEG and organoid LFP show various levels of similarity throughout development. RMS, root-mean-

square; 50% and 95% refer to 50th and 95th percentile of feature distribution within a recording.

(C) Pearson’s correlation coefficients between age and electrophysiological features (mean ± SD of bootstrapped distribution) for both organoid and premature

neonates show different degrees of developmental similarity for individual features (12 total selected). For example, SATs (events) per hour shows remarkable

similarity over time between organoid and neonates.

(D) Schematic of machine learning procedure for age prediction: EEG features from 39 premature neonates (n = 567 recordings) between 25 and 38 weeks PMA

(post-menstrual age) were used to train and cross-validate a regularized regression model (ElasticNet), optimizing for preterm neonate age prediction based on

their EEG features only (top). Themodel was clamped after training and applied directly on organoid LFP features and control datasets, including held-out preterm

neonate data, mouse primary culture, 2D iPSC culture, and human fetal brain culture.

(E) Model-predicted developmental time (y axis, age in weeks) follows actual weeks in culture (x axis) for organoids (orange and blue), as well as true age of held-

out preterm neonate data points (black). Dashed line represents unity, signifying perfect prediction. Large circles on solid lines and shaded regions denotemean ±

SD of prediction, respectively, and dots indicate per sample prediction (n = 8 for organoids at all time points).

(F) Pearson’s correlation coefficient between predicted and actual developmental time for organoid and control datasets. Significant positive correlations indicate

the model’s ability to capture developmental trajectory in a particular dataset.
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filtering by the scalp and orientation of neuronal populations in

relation to the recording electrode. Therefore, we selected a sub-

set of 12 features to compare in the organoid LFP (highlighted in

Table S2); the majority of those correspond to duration and

timing of SATs. Although features like EEG SD (or root-mean-

square [RMS]) and interhemispheric synchrony are likely altered

by skull thickening during early development, the large-ampli-

tude network synchronous events are reliably detected in both

EEG and LFP. Timing features derived from SAT times (duration,

inter-SAT interval, etc.) were compared between cortical orga-

noid and preterm neonates.

By comparing specific timing features between cortical orga-

noids and preterm infants, we found a range of correlations in the

developmental trajectory of features with age, as well as similar-

ities in development between the two datasets (Figures 4B and

C). For instance, ‘‘SATs per hour’’ (‘‘events per hour’’ in organo-

ids; Figure 4B) and 95th percentile of inter-SAT duration distribu-

tion showed high similarity both in absolute value and their

developmental trajectory (correlation with age), and ‘‘root-

mean-square SAT duration’’ and median (50%) SAT duration

showed different trends and absolute value, from 25 to 38 weeks

in both datasets (all features presented in Figures S4C and S4D).

To compare the similarity of developmental trajectory quantita-

tively, we computed the average resampled correlation between

each feature and developmental time in both datasets (Figures

4C and S4D; see STAR Methods for details). These results sum-

marize what is shown in Figure 4B: SATs per hour consistently

increase during development in both organoids and preterm in-

fants, while the variability of SAT duration (TSAT RMS) consis-

tently decreases. Other features showed inconsistent develop-

mental trajectories over time between organoid LFPs and

preterm EEGs.

Taking into consideration the wide range of similarities

observed across the two datasets, we asked which features’

developmental trajectory was most informative of the develop-

mental time and whether those were conserved between orga-

noids and preterm infants. To accomplish this in an objective

fashion, we trained a regularized regression model with cross-

validation (ElasticNet; L1 and L2 regularized) to predict preterm

infant age from their EEG features. In other words, the regression

model was only optimized to predict preterm infant age based on

their EEG and was blind to the organoid data. Following training

and hyperparameter selection, the regression model was

‘‘locked’’ while we directly applied it on the organoid LFP dataset

and various control datasets to obtain their predicted develop-

mental time (Figure 4D).

Although the regression model predicted organoid develop-

mental time poorly before 25 weeks (Figure 4E, orange) and

with high variability, mean predicted developmental time fol-

lowed culture time with much higher fidelity after 25 weeks

(blue). A subset of the preterm EEG data held out during training

was used to further validate the performance of the model

(black), in addition to other control datasets, includingmouse pri-

mary culture, iPSCmonolayer culture, and human fetal brain cul-

ture (Figure S4E; details in STAR Methods). To quantify how well

developmental trend over time was captured by the regression

model, we computed the Pearson correlation coefficient be-

tween the model-predicted age and the true age of the various

datasets. Note that a significant positive correlation was only
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observed for organoid and held-out EEG datasets (Figure 4F).

Although the developmental trajectory of cortical organoids is

not identical to, and more variable than, that of the fetal human

brain, the two populations share similarities in how their network

electrophysiological properties change over time, suggesting

genetically programmed developmental timelines that can be

detected by a simple machine learning algorithm.
DISCUSSION

Although brain organoids have been shown to mimic early

human neurodevelopment at the cellular and molecular levels,

evidence of network activity maturation and the corresponding

cellular basis have not been previously explored. Here, we report

the formation of small-scale functional electrophysiological

networks in human cortical organoids while tracking their gene

expression profile and cellular composition over time. Single-

cell RNA sequencing (RNA-seq) at multiple time points spanning

10 months show development of various cellular subclusters,

transitioning from progenitor cells to neuronal and glial

populations.

Cortical organoids begin to exhibit highly synchronous and

stereotypical network activity at 2 months, which transition into

2- or 3-Hz rhythmic activity by 4–6 months. Subsequently,

network activity becomes more variable spatiotemporally, coin-

cidingwith the development of inhibitory populations. Oscillatory

activity at 6 months exhibits cross-frequency coupling, a poten-

tial signature of functional neuronal network communication;

pharmacological intervention demonstrates the causal involve-

ment of glutamate and GABA in generating and sustaining oscil-

lations. Finally, we observe similarities in the developmental tra-

jectory of some electrophysiological features between

organoids and human preterm infants, where a machine learning

model trained to predict neonatal age from their EEG features

can predict organoid developmental timeline. Taken altogether,

these results demonstrate the utility of human-stem-cell-derived

brain organoids as a viable neuroscience research model, not

only for the shifting landscape of molecular and cellular compo-

sition but also for thematuration of functional activity in brain net-

works during early neurodevelopment.
Diversity of Excitatory and Inhibitory Populations
We used longitudinal single-cell transcriptional profiling followed

by immunostaining and functional validation to demonstrate the

cellular dynamics of cortical organoids during long-term devel-

opment, revealing an unprecedented diversity of cell types.

Notably, GABAergic neurons were mainly restricted to 6- to

10-month organoids, reaching around 10%–15% of the total

neural population after 10 months, consistent with its presence

later in the in vivo development (Uylings et al., 2002). A metabo-

lomic identification of GABA released in the culture media was

further used to validate the presence and functionality of the

GABAergic system. Although our aim was not to investigate

the origin of GABAergic neurons in the human neocortex, we

cannot exclude the possibility of aberrant cellular differentiation,

warranting further dissection of the cortical organoid model for

novel neurodevelopmental pathways. The dynamic cell popula-

tion and the presence of neurotransmitter systems suggest the
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activity of the basic components for the emergence of a neural

network in a developing in vitro model.

Synchronous Oscillations as a Signature of Functional
Network Activity
The presence and changes of oscillations at fast timescales

(>1 Hz) is a hallmark of the in vivo brain, and coupling across

different frequencies has been proposed to coordinate the flow

of information across regions (Buzsáki, 2004; Fries, 2005; Voytek

et al., 2015). With the cellular components for the generation of a

functional neural network in place, we testedwhether the cortical

organoids display activity typically found in organized cortical

networks. Robust extracellular electrical activity was observed

at earlier stages and progressively developed into an organized

oscillatory network. Cortical organoids initially exhibited periodic

and highly regular nested oscillatory network events that were

dependent on glutamatergic and GABAergic signaling. Our

data suggest that GABA transmission is crucial for the mainte-

nance, but not the initiation, of faster oscillatory activity. This is

consistent with accounts of inhibition rhythmically coordinating

pyramidal populations’ activity during early development (Opitz

et al., 2002). Additionally, during periods of high network activity,

the power of high-frequency (>100 Hz) activity is coupled to the

phase of the 3-Hz oscillation in the LFP. Without positing its

functional role, this observation suggests that more complex

oscillatory activity can indeed manifest and be studied in this

in vitro system.

It is also unclear the biological basis of the increased variability

in the number of spontaneous events in organoid cultures, espe-

cially after 28 weeks in culture. We believe that different factors

could increasingly introduce variability or diversity into the neural

population during maturation. In this context, because we

started with single cells that aggregate to form organoids, small

population differences at early stages of organoid formation

could lead to changes in activity. Differences in the organoid

positioning on the MEA and manipulation could also affect the

signal acquisition. Additionally, we do not exclude the possibility

of the formation of independent network profiles based on

intrinsic activity and retro-feedback properties.

Comparing to the Early Developing Brain: Insights and
Limitations
Some features of early network dynamics in humans (e.g., SATs)

can be recapitulated by the in vitro model, with no additional

constraints other than structural and genetic similarities. The

regularized regression model presented here was built on

preterm EEG data only, following an internal cross-validation

procedure to estimate the hyperparameters. It was then directly

applied to organoid LFP data—previously unseen by the classi-

fier—to produce a ‘‘predicted developmental time,’’ in addition

to data from several other cellular models for validation. Simulta-

neous MEA and EEG seizure recordings, in human subjects,

share common features in the EEG frequency range (Schevon

et al., 2012). However, when comparing the in vitro MEA and

neonatal EEG features, it is crucial to remove any comparison

of features affected by the spatial filtering properties of the skull.

Moreover, there are a few factors that might challenge the inter-

pretation of the regression model results. First, it is difficult to

control external variation in infant EEG due to differences that
may arise from the EEG acquisition system and electrodes posi-

tioning. Second, clinical confounds due to potential neurological

condition andmedicationsmay also impact the dataset. Lastly, it

is important to highlight that the regression model cannot be

extended to neurotypical adult, as adult EEGs do not display

the observed bursting patterns under normal conditions; thus,

the relevant features (e.g., SAT timing features) cannot be

computed. Nonetheless, although we do not claim functional

equivalence between the organoids and a full cortex—neonatal

or adult—the current results represent the first step toward an

in vitromodel that captures some of the complex and oscillatory

spatiotemporal dynamics of the human brain.

Conclusions
Given the potential roles of synchronized and oscillatory network

dynamics in coordinating information flow between developed

brain regions (Uhlhaas et al., 2010), these results highlight the

potential for cortical organoids to advance our understanding

of functional electrophysiology. Additionally, by applying spiking

and LFP analysis that is traditional to animal models, our findings

offer a link between microscale organoid physiology and sys-

tems neuroscience. Finally, considering the diversity and matu-

ration of cell types generated, the robustness of the neuronal

networks, the presence of structural traits of mature neurons,

and the possibility of using sensory experience to modulate

neuronal activity collectively, cortical organoids may be used

to model cellular interactions and neural circuit dysfunctions

related to neurodevelopmental and neuropsychiatric pathol-

ogies. Importantly, this organoid model is small, approximately

one million times smaller than the human brain, but ethical

implications cannot be ignored about the future possibility of

larger and more complex organoids (Farahany et al., 2018).

Nevertheless, our findings illuminate a link between microscale

organoid physiology and systems neuroscience. This offers a

promising, small-scale experimental model of human neocortex

to help address neurodevelopmental pathologies that affect

millions of people but otherwise lack an existing animal model.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cell source
iPSC lines derived from control individuals have been previously characterized elsewhere (Nageshappa et al., 2016; Tang et al.,

2016). iPSC colonies were expanded on Matrigel-coated dishes (BD Biosciences, San Jose, CA, USA) with mTeSR1 medium

(StemCell Technologies, Vancouver, Canada). The cells were routinely checked by karyotype and CNV arrays to avoid genomic

alterations in the culture. Embryonic samples were obtained from fetus brains and cultured in Neurobasal (Life Technologies,

Carlsbad, CA, USA) supplemented with GlutaMAX (Life Technologies), 1% Gem21 NeuroPlex (Gemini Bio-Products, West Sacra-

mento, CA, USA), 1%MEM nonessential amino acids (NEAA; Life Technologies), 1% penicillin/streptomycin (PS; Life Technologies).

The study was approved by the University of California San Diego IRB/ESCRO committee (protocol 141223ZF).

Rodent cell source
Newborn mouse primary culture was performed as described elsewhere (Moore et al., 2019). The cells were maintained in

Neurobasal medium with GlutaMAX, 1% Gem21 NeuroPlex, 1% NEAA and 1% PS. The study was approved by the University of

California San Diego IACUC committee (protocol S09005).

METHOD DETAILS

Generation of cortical organoids
Feeder-free iPSCs were fed daily with mTeSR1 for 7 days. Colonies were dissociated using Accutase (Life Technologies) in PBS (1:1)

for 10minutes at 37�Cand centrifuged for 3minutes at 150 x g. The cell pellet was resuspended inmTeSR1 supplementedwith 10 mM

SB431542 (SB; Stemgent, Cambridge, MA, USA) and 1 mM Dorsomorphin (Dorso; R&D Systems, Minneapolis, MN, USA).

Approximately 4 3 106 cells were transferred to one well of a 6-well plate and kept in suspension under rotation (95 rpm) in the
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presence of 5 mM ROCK inhibitor (Y-27632; Calbiochem, Sigma-Aldrich, St. Louis, MO, USA) for 24 hours to form free-floating

spheres. After 3 days, mTeSR1 was substituted by Media1 [Neurobasal (Life Technologies) supplemented with GlutaMAX, 1%

Gem21 NeuroPlex (Gemini Bio-Products), 1% N2 NeuroPlex (Gemini Bio-Products), 1% NEAA (Life Technologies), 1% PS (Life

Technologies), 10 mM SB and 1 mM Dorso] for 7 days. Then, the cells were maintained in Media2 [Neurobasal with GlutaMAX, 1%

Gem21 NeuroPlex, 1%NEAA and 1%PS] supplemented with 20 ng/mL FGF2 (Life Technologies) for 7 days, followed by 7 additional

days in Media2 supplemented with 20 ng/mL of FGF2 and 20 ng/mL EGF (PeproTech, Rocky Hill, NJ, USA). Next, cells were

transferred to Media3 [Media2 supplemented with 10 ng/mL of BDNF, 10 ng/mL of GDNF, 10 ng/mL of NT-3 (all from PeproTech),

200 mM L-ascorbic acid and 1 mM dibutyryl-cAMP (Sigma-Aldrich) to promote maturation, gliogenesis and activity]. After 7 days,

cortical organoids were maintained in Media2 for as long as needed, with media changes every 3-4 days.

Neurosphere generation
The neurosphere generation protocol was published elsewhere (Nageshappa et al., 2016). Briefly, iPSC were dissociated using

Accutase (Life Technologies), centrifuged and resuspended in medium (IMDMmedium, 15% fetal bovine serum, 2 mM L-glutamine,

1% NEAA, 1 mM sodium pyruvate, 100 U PS, 200 mg/mL iron-saturated transferrin, 10 mM b-mercaptoethanol, 50 mg/mL ascorbic

acid; supplemented with 10 mM SB (Stemgent) and 1 mMDorso (R&D Systems) on a ‘‘low-attachment’’ plate for embryoid body (EB)

formation. After 8 days, the EBs were plated for rosette formation and expansion of neural progenitors in the presence of defined

medium DMEM/F-12 supplemented with Gem21 NeuroPlex (Gemini Bio-Products) and 20 ng/mL of FGF2. For neurosphere

generation, 4,000 neural progenitors were seeded on ‘‘low-attachment’’ plate under rotation with no FGF2. The neurospheres

were developed for around 8 weeks prior to MEA plating.

Mycoplasma testing
All cellular cultures were routinely tested for mycoplasma by PCR. Media supernatants (with no antibiotics) were collected,

centrifuged, and resuspended in saline buffer. Ten microliters of each sample were used for a PCR with the following primers:

Forward: GGCGAATGGGTGAGTAAC; Reverse: CGGATAACGCTTGCGACCT. Only negative samples were used in the study.

Immunofluorescence staining
Cortical organoids were fixed with 4% paraformaldehyde overnight at 4�C and then transferred to 30% sucrose. After the 3D struc-

tures sink, they were embedded in O.C.T. (Sakura, Tokyo, Japan) and sliced in a cryostat (20 mm slices). Following air dry, the slides

containing the sliced samples were permeabilized/blocked with 0.1% Triton X-100 and 3% FBS in PBS for 2 hours at room temper-

ature, and incubated with primary antibodies overnight at 4�C. Primary antibodies used in this study were: mouse anti-Nestin, Abcam

(Cambridge, UK) ab22035, 1:250; rat anti-CTIP2, Abcam ab18465, 1:500; rabbit anti-SATB2, Abcam ab34735, 1:200; chicken anti-

MAP2, Abcam ab5392, 1:2000; rabbit anti-Synapsin1, EMD-Millipore AB1543P, 1:500; mouse anti-NeuN, EMD-Millipore MAB377,

1:500; rabbit anti-Ki67, Abcam ab15580, 1:1000; rabbit anti-SOX2, Cell Signaling Technology 2748, 1:500; rabbit anti-GFAP, DAKO

Z033429, 1:1000; rabbit anti-TBR1, Abcam ab31940, 1:500; rabbit anti-TBR2, Abcam ab23345, 1:500; rabbit anti-beta-catenin,

Abcam E247, 1:200; mouse anti-GABA, Abcam ab86186, 1:200; mouse anti-GABA B Receptor 1, Abcam ab55051, 1:100; mouse

anti-Parvalbumin, Millipore MAB1572, 1:500; rabbit anti-Calretinin, Abcam ab92341, 1:200; rat anti-Somatostatin, Millipore

MAB354, 1:100; rabbit anti-TTF1 (NKX2.1), Abcam ab76013, 1:200. Next, the slices were washed with PBS and incubated with

secondary antibodies (Alexa Fluor 488-, 555- and 647-conjugated antibodies, Life Technologies, 1:1000) for 2 hours at room

temperature. The nuclei were stained using DAPI solution (1 mg/mL). The slides were mounted using ProLong Gold antifade reagent

and analyzed under a fluorescence microscope (Axio Observer Apotome, Zeiss).

Electron microscopy (EM)
EM was performed at the CMM Electron Microscopy Facility at University of California San Diego. Four-month organoids were

immersed in modified Karnovsky’s fixative (2.5% glutaraldehyde and 2% paraformaldehyde in 0.15 M sodium cacodylate buffer,

pH 7.4) for at least 4 hours, post fixed in 1% osmium tetroxide in 0.15M cacodylate buffer for 1 hour and stained in 2% uranyl acetate

for 1 hour. Samples were dehydrated in ethanol, embedded in Durcupan epoxy resin (Sigma-Aldrich), sectioned at 50 to 60 nm on a

Leica Ultracut UCT (Leica, Bannockburn, IL), and transfered onto Formvar and carbon-coated copper grids. Sections were stained

with 2%uranyl acetate for 5minutes and Sato’s lead stain for 1minute. Grids were analyzed using a JEOL 1200EX II (JEOL, Peabody,

MA) transmission electron microscope equipped with a Gatan digital camera (Gatan, Pleasanton, CA).

10X genomics single-cell and analysis
Cortical organoids were manually dissociated and sorted for single-cell RNA-seq analysis on the same day. Dissociated cells were

first placed on ice, diluted in 2-5 mL of cell media and treated with flavopiridol (5 mM, Sigma-Aldrich) to arrest transcriptional activity.

Cells were stained with the DNA-dyes DAPI (300 nM, Invitrogen) and DRAQ5 (2.5 mM, Thermo-Fischer), and incubated on ice for

10 minutes prior to sorting. Cells were sorted using a SH800 sorter (Sony) into 50 mL of cell media using a gating strategy that first

isolated large, cell-sized particles and then sorted based on viability. Sorted cells were pelleted (3min, 100 x g, 4�C) and resuspended

in 40 mL of fresh cell media. Cell concentration was determined and theminimumpopulation viability threshold for downstream single

cell RNA-seq processing was set at 80%.
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Single cell RNA-seq libraries were constructed using the Chromium Single Cell 30 v2 Library kit (10x Genomics, (Zheng et al., 2017)

according to manufacturer descriptions; approximately 12,000 cells were loaded per sample. Reverse transcription and other ampli-

fication steps were carried out on a T100 thermal cycler (Bio-Rad). After reverse transcription, GEMs (Gel beads in emulsion) were

lysed and cDNA was cleaned up with MyOne Silane Beads (Thermo Fisher Scientific). Single stranded cDNA was PCR-amplified for

12 cycles and purified using SPRIselect Reagent Kit (Beckman Coulter). Next, cDNAwas enzymatically fragmented followed by dou-

ble size selection with SPRIselect Reagent Kit (B23317, Beckman Coulter). Subsequently, adaptors were ligated and libraries were

constructed by PCR. Another round of double size selection was performed using SPRIselect Reagent Kit to generate final libraries

with a size of 200-700bp. Final libraries were quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and size

distribution was measured using Tapestation (High Sensitivity D1000, Agilent). Average fragment size of successful libraries was

500 bp. The libraries were loaded at a concentration of 13 pM and sequenced on a Hiseq 4000 sequencer (Illumina) with the following

parameters (Read1 26 cycles; Index 1 8 cycles; Read 2 98 cycles).

Raw sequencing data from 1, 3, 6, 10-month organoids were preprocessed with Cell Ranger software (version 2.1.1, 10X Geno-

mics, Pleasanton). Reads were aligned to hg38 human reference genome (Zerbino et al., 2018) and the feature-barcode matrix was

generated. The secondary analysis performed on the feature-barcode matrix was processed via the Seurat v2.0 package (Butler

et al., 2018). For the analysis of individual time points, all genes that were not detected in at least 5 cells and cells with less than

200 genes detected were discarded. The additional filtering was based on gene-UMI distribution and percentage of mitochondrial

reads. The filtered matrix was log-normalized and scaled to 10,000 transcripts per cell. Variable genes across the single cells were

identified with the FindVariableGenes function and unwanted sources of variation, such as UMI counts per cell, percent of mitochon-

drial reads, were regressed out with the ScaleData function. Dimension reduction of the pre-processed matrix was performed by

principal component analysis (PCA). The number of principal components was identified based on a strong enrichment of genes

with low p values, which were computed by a resampling test. This procedure was implemented with the JackStraw function in

Seurat. With the selected dimensions, cellular distance matrix was first organized into a K-nearest neighbor (KNN) graph and then

partitioned into clusters with Louvain algorithm via the FindClusters function. Finally, cells within the graph-based clusters were

co-localized on the UMAP plot (McInnes et al., 2018) of two dimensions by the RunUMAP function. Identifying top differentially

expressed genes for each cluster was performed using the FindAllMarkers function.

Datasets from the four time points weremerged with theMergeSeurat function and then themergedmatrix was used as an input to

the Seurat v3 anchoring procedure, which assembles datasets into an integrated reference by identifying cell pairwise correspon-

dences for single cells across different datasets. Further analysis was processed with Seurat v3.0 package (Stuart et al., 2019).

Default parameters including a dimensionality of 30 were set to run the FindIntegrationAnchors and IntegrateData function. On

the integrated datasets, clustering was performed with a resolution parameter set to be 1.0 and a dimensionality of 30 by

FindNeighbors and FindClusters. With the graph-based clustering, a total of 14 clusters were generated, which were further merged

into sevenmain clusters based on expression of marker genes. UMAP plots displayed by the DimPlot function were used to visualize

and explore the integrated datasets. Dot plots and UMAP plots for transcript abundance of marker genes were made using ggplot2

package (Wickham, 2016), while the barplot was created with graphics v3.5.3 package (Murrell, 2005). The dot plots show the

percentage of cells that express more than one transcript for each gene and its log-normalized expression level across main cell

clusters. Violin plots for marker gene expression across all clusters were produced with the VlnPlot function.

Mass spectrometry
Samples were assayed using an adaptation of published protocol (Gertsman et al., 2014). Cortical organoid media (100 mL) was

mixed with 2 mM 13C4-4-aminobutyric acid, as internal standard. Metabolites were extracted using 80% ice-cold methanol. After

incubation for 30 minutes at�20�C, samples were deproteinized at 4�C by centrifugation at 17,136 x g for 10 minutes. Supernatants

were evaporated to dryness in a centrifugal evaporator at 36�C (Savant SPD121P Speed-Vac concentrator. Thermo Fisher, Asheville,

NC) and reconstituted in 100 mL of 10%methanol in water + 0.1% formic acid, bymeans of consecutive vortexing, orbital shaking and

sonication. 5 uL of which were injected into a Sciex 4500 triple quadrupole mass spectrometer (Sciex, Foster City, California, USA) to

determine 4-aminobutyric acid (GABA) concentration. Chromatographic separations were conducted in a 3 mm ACE C18-PFP

reversed-phase HPLC column (Mac-mod analytical, Chadds Ford, PA, USA) using an Acquity binary pump (Waters, Milford, MA,

USA) equipped with an in-line degasser at 0.3 mL/min flow-rate and at 13�C, to enhance the retention of the low-retained com-

pounds, by means of a simple binary gradient of acetonitrile partitioning in 3% acetonitrile in water, both containing 0.1% formic

acid. Compoundswere eluted during the first 3minutes, then it ramped to 100%. Total run timewas 45minutes. Positive electrospray

ionization multiple reaction monitoring transitions were optimized for GABA (and 13C4-GABA), m/z 104.2 > 87 (108.2 > 90.9) and m/z

104.2 > 68.9 (108.2 > 73), using collision energies of 15 and 23, respectively, and unit mass resolution. GABA concentrations were

calculated by interpolation using an 8-point calibration curve, spanning 0.01 to 0.2 mM, constructed by supplementing medium with

the appropriate amounts of GABA. Quantification was conducted using MultiQuant 2.1 software (Sciex, Foster City, CA, USA).

Whole-cell patch-clamp
Whole-cell patch-clamp recordings were performed from cells of cortical organoids in a similar condition as forMEA recordings: 6- to

8-week cortical organoids were plated on 35 mm dishes that were previously coated with 100 mg/mL poly-L-ornithine and 10 mg/ml

laminin. Cells were fed twice a week and were maintained for 24 weeks. The extracellular solution for patch-clamp experiments con-

tained (in mM) the following: 130 NaCl, 3 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose; pH 7.4 with 1M NaOH (�4mM Na+
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added). The internal solution for patch electrodes contained (in mM) the following: 138 K-gluconate, 4 KCl, 10 Na2-phosphocreatine,

0.2 CaCl2, 10 HEPES (Na+ salt), 1 EGTA, 4Mg-ATP, 0.3 Na-GTP; pH 7.4 with 1M KOH (�3mM K+ added). The osmolarity of all

solutions was adjusted to 290mOsm. Electrodes for electrophysiological recording were pulled on a Flaming/Brown micropipette

puller (Model P-87, Sutter Instrument, CA, USA) from filamented borosilicate capillary glass (1.2mmOD, 0.69mm ID,World Precision

Instruments, FL, USA). The electrode resistances were 3–8MU. Patch-clamp experiments were performed with an Axon CV-4 head-

stage and Axopatch 200A amplifier (Molecular Devices, CA, USA) at room temperature. Liquid junction potential correction (�10mV)

was not applied. Electrophysiology data were analyzed offline using pCLAMP 10 software (Molecular Devices, CA, USA).

Multi-electrode array (MEA) recording
6-week cortical organoids were plated per well in 12-well MEA plates (Axion Biosystems, Atlanta, GA, USA). Each well contains 64

low-impedance (0.04 MU) platinum microelectrodes with 30 mm of diameter spaced by 200 mm, yielding a total of 512 channels (8

wells containing organoids and 4 internal control). The plate was previously coated with 100 mg/mL poly-L-ornithine and 10 mg/

mL laminin, and we performed four independent experiments in duplicates. Cells were fed twice a week and measurements were

collected 24 hours after the medium was changed, once a week, starting at two weeks after plating (8 weeks of organoid

differentiation). Recordings were performed using a Maestro MEA system and AxIS Software Spontaneous Neural Configuration

(Axion Biosystems) with a customized script for band-pass filter (0.1-Hz and 5-kHz cutoff frequencies). Spikes were detected with

AxIS software using an adaptive threshold crossing set to 5.5 times the standard deviation of the estimated noise for each electrode

(channel). The plate was first allowed to rest for 3 minutes in the Maestro device, and then 4 minutes of data were recorded. For the

MEA analysis, the electrodes that detected at least 5 spikes/min were classified as active electrodes using Axion Biosystems’ Neural

Metrics Tool. Bursts were identified in the data recorded from each individual electrode using an inter-spike interval (ISI) threshold

requiring aminimumnumber of 5 spikes with amaximum ISI of 100ms. Aminimum of 10 spikes under the same ISI with aminimumof

25% active electrodes were required for network bursts in the well. The synchrony index was calculated using a cross-correlogram

synchrony window of 20 ms. Bright-field images were captured to assess for cell density and electrode coverage.

Custom MEA analysis
Custom MEA analysis and developmental time regression model can be found in: https://github.com/voytekresearch/

OscillatoryOrganoids. Raw MEA recordings were converted to .mat files using Axion-provided functions and analyzed offline using

customMATLAB functions and scripts. Local field potential signals (LFP) from each of the 64 electrodes were generated by low-pass

filtering (FIR filter) and downsampling raw signals from 12,500 Hz to 1,000 Hz (resample.m). Multi-unit spikes were detected as

follows: each channel was first referenced to the well median for every time point, similar to a common average reference (64 chan-

nels). Themedian was used instead of themean to avoid biasing the reference during high firing rate periods. Next, the re-referenced

signal was bandpass filtered for 300-3,000 Hzwith a 3rd-order Butterworth filter (butter.m). The adaptative spike threshold was set to

be 5.5 standard deviations, where the standard deviation was estimated from the median as previously described (Quiroga et al.,

2005) to avoid biasing the threshold for channels with high firing rates (thus an artificially high threshold). Spike timestamps were

taken as the peak time after the absolute value of the signal crossed the threshold, but at least 1ms from another spike (findpeaks.m).

Spike timestamps were then converted into binary vectors (1 ms bin size), summed across 64 channels, and smoothed (conv.m) with

a normalized 100-point (0.1 s) Gaussian window (gausswin.m) to create a population spiking vector for each MEA well. Note that

spikes from each channel do not represent putative single-unit action potentials, as the spatial resolution of MEA electrodes were

too sparse. Multi-unit spiking was not sorted since total population spiking (of well) was submitted for further analysis, rather than

individual spike trains.

Network event analysis
A network event was detected when population spiking was i) greater than 80% of the maximum spiking value over the length of the

recording; ii) at least 1 spike/s; and iii) 1 s away from any other network events. The first peak after all 3 criteria was satisfied was

marked as t = 0, and the window of data from 0.5 s before to 2.5 s after the peak was collected as the network event, as events almost

always subsided 2.5 s after onset by both algorithmic detection and visual inspection. Nearly all spiking channels experienced a

significant firing rate increase during network events. LFP data from all 64 channels from the same time frame were also collected

for analysis. All events from different MEA wells obtained on the same recording day were aggregated for statistical analysis and

plotting. Subpeaks within an event were identified using findpeaks.m, where a subpeak must satisfy the following: i) peak height

of at least 25% of the first peak; ii) peak width of at least 50 ms; iii) at least 200 ms away from the previous peak; and iv) peak prom-

inence of 1 over Peak 1 height. Subpeak time and the height relative to the initial peak were recorded. The inter-event interval coef-

ficient of variation (IEI CV) was calculated as the standard deviation of the inter-event interval divided by itsmean, where IEI is the time

between consecutive network events within the same MEA well. Event temporal correlation was calculated as the mean Pearson

correlation coefficient of population spiking vector between each pair of network event in the same MEA well across a single

recording session. Event spatial correlation was calculated as the mean Pearson correlation coefficient between all pairs of 64

LFP channels during each 3 s network event.
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Oscillatory spectral power analysis
Power spectral density (PSD) estimates were computed usingWelch’smethod (pwelch.m), with awindow length of 2 s and overlap of

1 s. Oscillatory power was defined as peaks in the PSD above the aperiodic 1/f power law decay. Thus, for each channel, a straight

line was fit over the PSD in double-log space between 0.5-20Hz using robust fit (robustfit.m), and oscillatory power was computed as

the difference between the mean log PSD power and the mean log fitted power (baseline), over 2.5-4.5 Hz. This method accounts for

non-oscillatory changes, such as slow transients or the aperiodic 1/f background component, whereas standard wavelet filtering

methods will confound the two (Haller et al., 2018).

Phase Amplitude Coupling (PAC)
LFP data from all 64 channels of each well was first lowpass/bandpass filtered (eegfilt.m, EEGLAB) for delta (0-4 Hz) and high-fre-

quency, broadband (100-400 Hz) activity, sometimes referred to as high gamma. Delta phase was extracted by taking the phase

angle of the bandpassed delta signal Hilbert transform (hilbert.m, angle.m), while gamma power was extracted by taking the squared

magnitude of the filtered gamma. Gamma power was smoothed with the same delta-band filter for display purposes, but not for

subsequent analysis. Note that analysis was performed for 100-200 Hz and 200-400 Hz separately, as LFP spectrum follows an in-

verse power law (1/f), and grouping a wide frequency band (100-400 Hz) together would bias power estimates toward lower

frequency limits (�100 Hz). To compute PAC, instantaneous delta phase was binned into 20 equidistant bins between -p and p,

and gamma power was sorted based on the corresponding delta phase at the same sample time and averaged across the same

phase bin. This procedure was performed separately for event and non-event indices, where event indices are the same 3 s windows

as described above in Network Event Analysis,while all other times are considered as non-event time points. Modulation Index was

computed as the Kullback-Leibler divergence between the sum-normalized distribution of gamma power across phase bins and a

uniform distribution (Tort et al., 2010). Figure 3C presents well-averaged MI across all 64 channels. For visualization in Figure 3B, the

binned gamma power vector for each channel was circularly shifted such that the phase of maximum gamma power was -p.

Pharmacology
The pharmacological manipulation was performed with cortical organoids plated on 4 MEA wells (n = 4, cortical organoid culture)

using the following drugs: 10 mM bicuculline, 100 mM picrotoxin, 50 mM muscimol, 20 mM CNQX, 20 mM AP5, 25 mM baclofen and

1 mM TTX. In this assessment, baseline recordings were obtained immediately before and 15 minutes after the addition of the com-

pound. Three washes with PBS for total removal of the drug were performed in washout experiments; fresh media was added and

another recording was conducted after 2 hours.

Preterm neonatal EEG
A preterm neonatal EEG dataset was obtained from a publicly available dataset (Stevenson et al., 2017). Raw recordings were not

available due to patient confidentiality concerns. The dataset includes 567 recordings from 39 preterm neonates (24-38 weeks PMA),

consisting of 23 EEG features computed from the entirety of each recording (Table S2). See cited publication for details of features.

Briefly, we chose to include features derived from duration and timing of (interval between subsequent) network events in neonates

and organoids, as these are least affected by anatomical differences between the two model systems (i.e., skull filtering), as well as

spectral features (delta, theta, and alpha power). 5%/50%/95% refer to percentile of the feature distribution from a recording.

Resampled feature-age correlation
We computed Pearson’s correlation coefficient between neonate age and each of the 12 EEG features, after a leave-K-groups-out

resampling procedure N times, where K is the number of neonates fromwhomall recordingswere left out in computing the correlation

(50% of all neonates, resampling N = 100). An identical procedure was performed to compute the correlation between organoid cul-

ture development time and LFP features (K = 4 out of 8, 50%, N = 100). Mean and standard deviation were then computed over all

resampled draws in order to compare between organoid LFP and neonatal EEG to produce Figures 4C and S4D.

Neonate-organoid development time regression model
To compare the similarity of developmental trajectory of cortical organoids and the preterm human brain, we trained an Elastic Net

(L1- and L2- regularized) regression model on only the preterm neonatal EEG features and used that model (with all parameters held

the same) to predict an equivalent organoid development time for each recording time point over 40weeks in culture. Specifically, the

training dataset consisted of a subset of the preterm EEG data; we discarded all ‘‘low-activity-period’’ features (Lisman, 1997) since

there was no equivalent period for organoid recordings, as well as features for which we could not sensibly compute from organoid

LFPs, such as interhemispheric synchrony. This selection was done a priori, and 12 features remained, including 3 features for rela-

tive spectral power in distinct frequency bands. The features corresponding to aspects of spontaneous activity transient (SAT) timing,

such as SATs per hour and SAT duration, were similarly computed on organoid LFPs after network event detection described earlier

(see Table S2 for a full list of included and rejected features). This latter organoid LFP test dataset was never seen by the regression

model until prediction time. Training was performed using scikit-learn linear model module [ElasticNetCV (Pedregosa et al., 2011)],

with K-Group shuffle split cross-validation on regularization hyperparameters, where K = 25% of groups, N = 200 shuffles. In other

words, we found the best regularized linear model possible for predicting the age of preterm neonates using those precomputed EEG

features. This model was directly applied on organoid LFP features to determine the corresponding development time of the
e6 Cell Stem Cell 25, 1–12.e1–e7, October 3, 2019



Please cite this article in press as: Trujillo et al., Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network
Development, Cell Stem Cell (2019), https://doi.org/10.1016/j.stem.2019.08.002
organoids during 40 weeks in culture. Control datasets were also submitted for prediction, including held-out preterm EEG (positive

control), and mouse primary culture, 2D iPSC culture, and human fetal culture (negative controls). To quantify the model’s ability to

predict the developmental trend of the out of sample datasets, we compute the Pearson correlation coefficient between the pre-

dicted and actual age of each dataset. To eliminate the potential confound of a difference in frequency-dependent filtering properties

of the skull and difference in spatial integration of currents in macroscopic EEG electrodes compared to microscopic planar MEA

electrodes, the same analysis was performed after discarding the spectral features (leaving 9 features total). This result is presented

in Figure S4E, in addition to the prediction for the control datasets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Data are presented as mean ± s.e.m., unless otherwise indicated, and it was obtained from different samples. No statistical method

was used to predetermine the sample size. The statistical analyses were performed using Prism software (GraphPad, San Diego,

CA, USA). Student’s t test, Mann–Whitney-test, or ANOVA with post hoc tests were used as indicated. Significance was defined

as p < 0.05(*), p < 0.01(**), or p < 0.001(***).

Statistics and Regression for custom MEA analysis
To fit linear or quadratic models in Figures 2F, 2G, and 2I, we used organoid developmental time (in days) as input and electrophys-

iological features as output (LinearModel.fit, MATLAB). Reported R2 and p values are model statistics over the entire dataset. All

events from different MEA wells on the same recording day were aggregated as samples drawn from the same distribution.

DATA AND CODE AVAILABILITY

Single-cell RNA sequencing data
All datasets and/or analyses generated during the current study are available from the Lead Contact upon reasonable request.

Single-cell RNA sequencing data that support the findings of this study have been deposited at NCBI GEO: GSE130238.

The unnormalized feature weights
The code can be found online:

https://github.com/voytekresearch/OscillatoryOrganoids/blob/master/organoid_EEG_age_regression.ipynb.
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Figure S1. Cellular and molecular characterization of human cortical organoids. Related to Figure 1. (A) 



Organoids are composed of a proliferative region surrounded by intermediate progenitor cells, cortical neurons. 

Scale bar, 50 μm. (B) UMAP plots highlighting time point specific cells. (C) UMAP plots for individual time point 

showing cell-type specific marker expression levels (D) Violin plots of marker gene expression across all clusters. 

(E) Subcluster analysis of GAD2 population from 10-month cortical organoids. (F) GABAergic neuronal markers 

expression of 10-month cortical organoids. (G) Detection of GABA neurotransmitter in the culture media using 

mass spectrometry. The average GABA concentration in the media was 0.028 ± 0.014 µM. 

 



 

Figure S2. Long-term cortical organoid network activity. Related to Figure 2. (A) Electrophysiological 



characteristics of 6-month human iPSC-derived cortical organoids. Whole-cell current-clamp recording of a 

representative neuron from 6-month cortical organoids showing repetitive action potential firing in response to 

50 pA current injection from a resting membrane potential of -63 mV. Application of 1 µM TTX abolished the 

firing (lower panel). (B) Whole-cell voltage-clamp recording in the same neuron showing voltage-gated K+ current 

and TTX-sensitive Na+ current, elicited from a holding potential of -80mV to the indicated voltages. (C) Plot of 

the peak current sizes of K+ channels and Na+ channels as a function of voltage determined from neurons of 6-

month cortical organoids (peak INa size = -1466.86 ± 575.18 pA. Peak IK size = 3031.79 ± 1405.19 pA. n = 6 

neurons). (D) Voltage-clamp recording at -60 mV exhibiting spontaneous excitatory postsynaptic currents 

(sEPSCs) in another representative neuron (frequency of sEPSCs = 0.25 ± 0.10 Hz; n = 5 neurons. Amplitude 

of sEPSCs = -19.92 ± 5.90 pA; n = 5 neurons; we observed sEPSCs in 84% of the tested neurons). Application 

of NBQX and AP5 fully inhibited the sEPCS. (E) Representative traces showing that a human iPSC-derived 

neuron displays spontaneous AP firing (AP firing frequency = 13.67 ± 1.11 Hz; n = 6 neurons). The data are 

shown as mean ± s.e.m. (F) Representative activity heatmap and bright-field image of cortical organoids on the 

MEA plate. (G) Schematic representation of the electrical activity features analyzed from the MEA recordings. 

Each bar represents a spike; and a spike cluster (in blue) represents a burst. Bursts occurring at the same time 

in different channels characterize a network burst. The synchrony index is based on the cross-correlogram and 

represents a measure of similarity between two spike trains. (H) Temporal evolution of network activity 

characterized by different parameters. (I) Raster plots illustrating the development of network activity. (J) 

Consistent and reproducible development of electrical activity in cortical organoids over time. The data are shown 

as mean ± s.e.m (n = 8, independent experiments performed in duplicates using two clones of an iPSC line). 

 



 

Figure S3. Extended characterization of cortical organoid network electrophysiology. Related to Figure 



2. (A) Spikes detected on 9 channels. Black traces represent single spikes, blue and red traces represent the 

average of positive and negative spikes, respectively. Spike trains are not sorted for their polarity in the 

subsequent analyses, as total population spiking is the main feature of interest. (B) Representative oscillatory 

network events. Each overlapping trace represents a single occurrence of an event recorded on the same 

channel. LFP polarity of events differs between channels due to the spatial configuration of cells around the 

electrode. (C) Event onset peak (Peak 1) increases in amplitude until 30 weeks, while (D) subpeak amplitude 

continues to increase (for the 2nd-4th peak) throughout development. (E) Subsequent peaks occur with a 

consistent latency of ~400 ms after the previous peak, particularly for Peak 3 and 4. (F) Temporal similarity of 

network events during the 3-s window is high at early time points, but decreases with development, acquiring 

more variable dynamics within an event. The data showed in C and F are presented as mean ± s.e.m., linear (C, 

F) model regression. (G) Comparison of the protocol for neurosphere and cortical organoid generation. (H) 

Network-wide giant depolarizing potentials occur in neurosphere at a similar rate to those found in organoids 

recordings, and visible perturbations are observed in the LFP trace. However, the network recruitment in 

neurospheres is lower with significantly shorter events. Coherent low-frequency depolarizations are observed in 

filtered LFP events, but with much lower amplitude when scaled to the same range as those recorded from 

organoids (I, J). 



 

Figure S4. Network activity in cortical organoids and oscillatory features in the developing human brain. 



Related to Figure 4. (A, B) Time-frequency and spectral representation of time series data from a 6-month 

cortical organoid, demonstrating oscillatory phenomenon. Spectrogram (A) of organoid LFP shows bursts of 

activity localized at low frequencies, as well as 100Hz and beyond, while power spectral density (PSD, B) 

displays canonical 1/f power law decay and a narrow oscillatory peak at 3 Hz. (C) Comparison of preterm neonate 

EEG and cortical organoid features over time. For included EEG features, see Table S2. (D) Distributions of 

resampled Pearson correlation coefficients between feature and age for preterm neonate and organoid. (E) 

Model-predicted developmental time (y-axis, age in weeks) follows actual weeks-in-culture (x-axis) for organoids 

(orange and blue), as well as true age of held-out preterm neonate data points (black), excluding spectral 

features. Dashed line represents unity, signifying perfect prediction. Large circles on solid lines and shaded 

regions denote mean ± std of prediction, respectively, while dots indicate per-sample prediction (n = 8 for 

organoids at all time points). The unnormalized feature weights are: Constant: 53.93093; SATs per hour: 

0.05791; RMS SAT duration: 0.17439; SAT duration (50%): 0.46857; SAT duration (5%): -1.59115; SAT duration 

(95%): -0.17140; RMS Inter-SAT Duration: 1.01745; Inter-SAT duration (50%): -1.67926; Inter-SAT duration 

(5%): 0.00000; Inter-SAT duration (95%): -0.24631; Relative Delta Power: -31.94628; Relative Theta Power: -

39.72896; and Relative Alpha Power: 30.92235. 



SUPPLEMENTAL TABLES  
 
Supplemental Table 1. Top expressed genes of each cell cluster. Related to Figure 1. 

cluster gene avg_logFC pct.1 pct.2 p_val_adj 
GABAergic Neurons DLX5 1.17944 0.403 0.362 0.47966 
GABAergic Neurons DLX6-AS1 0.97634 0.75 0.396 5.59E-81 
GABAergic Neurons SEZ6L2 0.96254 0.945 0.713 2.58E-22 
GABAergic Neurons SYT1 0.91593 0.947 0.814 2.55E-20 
GABAergic Neurons CHCHD2 0.84772 0.468 0.45 0.01172 
GABAergic Neurons HMP19 0.84097 0.734 0.755 0.17341 
GABAergic Neurons ARL4D 0.82671 0.413 0.485 1 
GABAergic Neurons INSM1 0.82003 0.813 0.444 2.87E-57 
GABAergic Neurons DLX2 0.81130 0.361 0.336 2.48E-06 
GABAergic Neurons SCG3 0.78232 0.761 0.732 0.03532 
GABAergic Neurons RTN3 0.78167 0.958 0.907 1.17E-12 
GABAergic Neurons NSG1 0.76102 0.876 0.742 3.63E-08 
GABAergic Neurons DCX 0.75629 0.782 0.736 1.97E-27 
GABAergic Neurons TERF2IP 0.74991 0.95 0.851 4.66E-28 
GABAergic Neurons PAFAH1B3 0.74128 0.937 0.853 9.39E-21 
GABAergic Neurons YWHAQ 0.74116 0.971 0.921 2.55E-53 
GABAergic Neurons DAAM1 0.73920 0.913 0.765 5.32E-10 
GABAergic Neurons TAGLN3 0.72672 0.905 0.774 6.58E-05 
GABAergic Neurons TTC3 0.71927 0.976 0.909 8.55E-16 
GABAergic Neurons STMN2 0.69866 0.905 0.892 8.26E-52 
GABAergic Neurons TAC3 0.69627 0.342 0.404 1.99E-12 
GABAergic Neurons CD24 0.67659 0.95 0.808 6.11E-12 
GABAergic Neurons TXNIP 0.67286 0.939 0.832 1.04E-05 
GABAergic Neurons STMN4 0.66186 0.934 0.885 0.04858 
GABAergic Neurons NREP 0.64996 0.918 0.802 0.00264 
GABAergic Neurons RAB3A 0.63717 0.937 0.771 1.01E-12 
GABAergic Neurons SCGN 0.63426 0.216 0.15 1.62E-28 
GABAergic Neurons SVBP 0.63364 0.932 0.717 1.74E-06 
GABAergic Neurons BEX1 0.62955 0.821 0.835 1.69E-37 
GABAergic Neurons DSTN 0.62593 0.955 0.894 2.21E-24 
GABAergic Neurons GAD1 0.61455 0.679 0.33 1.30E-41 
GABAergic Neurons PROX1 0.61165 0.121 0.332 4.76E-93 
GABAergic Neurons HN1 0.60568 0.963 0.936 6.77E-94 
GABAergic Neurons DCLK1 0.60078 0.368 0.657 2.00E-22 
Glutamatergic Neurons NEUROD6 1.49931 0.9 0.771 0 
Glutamatergic Neurons BHLHE22 1.46368 0.905 0.793 0 
Glutamatergic Neurons STMN2 1.43649 0.99 0.834 0 
Glutamatergic Neurons GRIA2 1.39439 0.829 0.782 0 
Glutamatergic Neurons NEUROD2 1.35791 0.893 0.827 0 
Glutamatergic Neurons SNAP25 1.24934 0.803 0.764 0 
Glutamatergic Neurons TTC9B 1.20497 0.811 0.771 0 
Glutamatergic Neurons SYT4 1.11807 0.762 0.803 0 
Glutamatergic Neurons SNCA 1.10911 0.829 0.643 0 
Glutamatergic Neurons HMP19 1.10021 0.757 0.753 0 
Glutamatergic Neurons LY6H 1.09133 0.778 0.548 0 
Glutamatergic Neurons RAB3A 1.08320 0.857 0.726 0 
Glutamatergic Neurons INA 1.08214 0.777 0.777 0 
Glutamatergic Neurons GAP43 1.06736 0.943 0.731 0 
Glutamatergic Neurons HPCA 1.03546 0.73 0.624 0 
Glutamatergic Neurons CXADR 1.03219 0.862 0.651 0 
Glutamatergic Neurons TSPAN13 1.02606 0.809 0.57 0 
Glutamatergic Neurons CD24 1.01863 0.91 0.752 0 
Glutamatergic Neurons SYT1 1.00629 0.891 0.773 0 
Glutamatergic Neurons MAPT 1.00501 0.737 0.688 0 
Glutamatergic Neurons DCX 1.00326 0.865 0.661 0 
Glutamatergic Neurons RTN1 0.98969 0.935 0.718 0 
Glutamatergic Neurons NSG1 0.96682 0.796 0.716 0 
Glutamatergic Neurons SCG3 0.95190 0.726 0.736 0 
Glutamatergic Neurons CELF4 0.94679 0.671 0.721 1.75E-274 
Glutamatergic Neurons CRMP1 0.91715 0.878 0.727 0 
Glutamatergic Neurons LMO3 0.90245 0.712 0.805 1.51E-267 
Glutamatergic Neurons NELL2 0.90035 0.749 0.643 0 
Glia KIAA0101 1.09206 0.638 0.486 2.16E-187 



Glia TTYH1 1.07238 0.948 0.689 0.00E+00 
Glia SLC1A3 1.04241 0.855 0.621 0.00E+00 
Glia MT2A 1.00780 0.89 0.624 0.00E+00 
Glia SFRP1 1.00450 0.938 0.684 0.00E+00 
Glia SOX2 1.00279 0.946 0.643 0.00E+00 
Glia HES1 0.99522 0.832 0.59 0.00E+00 
Glia ID4 0.92316 0.912 0.687 0.00E+00 
Glia CLU 0.91605 0.978 0.732 0.00E+00 
Glia PEA15 0.89375 0.917 0.62 0.00E+00 
Glia HOPX 0.86840 0.818 0.622 0.00E+00 
Glia PMP2 0.78593 0.775 0.572 5.97E-304 
Glia METRN 0.76712 0.798 0.583 0.00E+00 
Glia ZFP36L1 0.74666 0.73 0.539 3.48E-258 
Glia PTN 0.74622 0.996 0.894 0.00E+00 
Glia IFI44L 0.74479 0.79 0.595 0.00E+00 
Glia CDO1 0.74388 0.869 0.631 0.00E+00 
Glia VIM 0.73690 0.993 0.858 0.00E+00 
Glia CENPH 0.71893 0.588 0.58 8.18E-45 
Glia HSPB1 0.71396 0.904 0.624 0.00E+00 
Glia PDLIM3 0.71318 0.807 0.62 0.00E+00 
Glia FGFBP3 0.68433 0.797 0.632 0.00E+00 
Glia FAM107A 0.68371 0.748 0.593 1.17E-226 
Glia C8orf4 0.68118 0.668 0.564 2.34E-135 
Glia B2M 0.67571 0.897 0.569 0.00E+00 
Glia PON2 0.67504 0.671 0.426 2.30E-204 
Glia STXBP6 0.66039 0.732 0.638 1.59E-177 
Glia SOX3 0.65821 0.76 0.435 0.00E+00 
Glia HMGB2 0.65603 0.824 0.572 0.00E+00 
Glia QKI 0.64190 0.775 0.611 1.01E-217 
Glia SRI 0.64014 0.899 0.654 0.00E+00 
Glia PHGDH 0.63803 0.766 0.615 1.70E-216 
Glia APOE 0.61466 0.78 0.575 6.86E-190 
Glia FOS 0.60483 0.777 0.642 7.93E-168 
Glia PSAT1 0.60446 0.788 0.598 1.05E-253 
Glia C1orf61 0.60285 0.976 0.863 0.00E+00 
Glia DBI 0.60169 0.932 0.781 0.00E+00 
Intermediate Progenitors EOMES 1.14946 0.697 0.545 1.50E-123 
Intermediate Progenitors TAC3 1.12454 0.535 0.392 3.21E-41 
Intermediate Progenitors NHLH1 1.08712 0.766 0.53 4.67E-254 
Intermediate Progenitors GADD45G 1.00439 0.794 0.619 5.82E-155 
Intermediate Progenitors ELAVL2 0.88637 0.828 0.724 1.16E-130 
Intermediate Progenitors NNAT 0.88553 0.911 0.841 8.74E-188 
Intermediate Progenitors RND3 0.64990 0.54 0.47 3.81E-21 
Intermediate Progenitors NEUROG1 0.62298 0.59 0.585 1.87E-10 
Intermediate Progenitors GDAP1L1 0.62253 0.757 0.671 1.08E-57 
Intermediate Progenitors TAGLN3 0.60150 0.856 0.77 1.68E-98 
Early Progenitors IGFBP7 0.89242 0.559 0.394 1.49E-30 
Early Progenitors TTR 0.84753 0.844 0.49 0 
Early Progenitors S100B 0.74367 0.833 0.481 0 
Early Progenitors SPARCL1 0.61008 0.928 0.434 0 
Early Progenitors TPPP3 0.60842 0.539 0.293 5.00E-23 
Early Progenitors CA2 0.58266289 0.614 0.403 4.70E-69 
Early Progenitors RBP1 0.56764771 0.879 0.438 0 
Early Progenitors TRPM3 0.56440266 0.768 0.324 0 
Early Progenitors CD9 0.54907859 0.743 0.263 0 
Early Progenitors ID3 0.54768285 0.889 0.558 0 
Early Progenitors CXCL14 0.53064106 0.567 0.402 1.01E-10 
Early Progenitors ID1 0.51512222 0.809 0.495 0 
Mitotic Cells UBE2C 2.08768 0.999 0.38 0 
Mitotic Cells TOP2A 1.92072 0.988 0.456 0 
Mitotic Cells CDC20 1.88666 0.969 0.294 0 
Mitotic Cells CENPF 1.83910 0.993 0.513 0 
Mitotic Cells NUSAP1 1.79161 0.985 0.531 0 
Mitotic Cells PTTG1 1.77245 1 0.532 0 
Mitotic Cells CCNB2 1.73661 0.956 0.298 0 
Mitotic Cells CCNB1 1.71891 0.939 0.362 0 
Mitotic Cells CDK1 1.68391 0.981 0.507 0 
Mitotic Cells ASPM 1.59134 0.939 0.436 0 
Mitotic Cells BIRC5 1.58211 0.963 0.37 0 



Mitotic Cells TPX2 1.55923 0.94 0.524 0 
Mitotic Cells PLK1 1.51556 0.88 0.386 2.04E-293 
Mitotic Cells MAD2L1 1.51083 0.967 0.555 0 
Mitotic Cells FAM64A 1.51073 0.91 0.313 0 
Mitotic Cells CKS2 1.50084 0.997 0.645 0 
Mitotic Cells PBK 1.47827 0.917 0.414 0 
Mitotic Cells CCNA2 1.46832 0.92 0.536 0 
Mitotic Cells GTSE1 1.44523 0.899 0.306 0 
Mitotic Cells AURKA 1.43015 0.876 0.399 1.86E-293 
Mitotic Cells CDKN3 1.40121 0.859 0.321 1.75E-264 
Mitotic Cells AURKB 1.39178 0.901 0.299 0 
Mitotic Cells NUF2 1.38631 0.898 0.478 0 
Mitotic Cells KPNA2 1.38186 0.982 0.578 0 
Mitotic Cells SMC4 1.37867 0.955 0.493 0 
Mitotic Cells HMGB2 1.36699 1 0.612 0 
Mitotic Cells CDCA3 1.36522 0.854 0.425 5.74E-253 
Mitotic Cells PSRC1 1.34100 0.914 0.501 2.10E-296 
Mitotic Cells CENPA 1.32905 0.869 0.291 0 
Mitotic Cells CKS1B 1.32614 0.971 0.525 0 
Other LGALS1 1.34401 0.97 0.479 1.62E-80 
Other IGF2 1.26378 0.955 0.402 7.22E-142 
Other COL3A1 1.25618 0.973 0.439 1.48E-136 
Other RBP1 1.14081 0.967 0.531 1.32E-123 
Other MGP 1.00395 0.602 0.45 5.94E-05 
Other DCN 0.95928 0.554 0.484 0.56345 
Other IFITM3 0.91015 0.708 0.362 5.14E-36 
Other COL1A1 0.89389 0.545 0.363 1 
Other SPARC 0.83734 0.916 0.663 2.93E-66 
Other APOE 0.81812 0.88 0.617 7.53E-38 
Other ANXA1 0.80045 0.867 0.335 6.95E-109 

 

 

 

 

 

 

  



Supplemental Table 2. Electrophysiological features in preterm neonatal EEG dataset and analogous 

features computed in organoid LFP. Related to Figure 4. 

Neonatal EEG features Computed organoid LFP features 

Envelope (50%) None 

Envelope (5%) None 

Envelope (95%) None 

rEEG (50%) None 

rEEG (5%) None 

rEEG (95%) None 

SATs per hour Network Events per hour 

RMS SAT duration RMS network event duration 

SAT duration (50%) Network event duration (50%) 

SAT duration (5%) Network event duration (5%) 

SAT duration (95%) Network event duration (95%) 

RMS Inter-SAT Duration RMS Inter-event Duration 

Inter-SAT duration (50%) Inter-event duration (50%) 

Inter-SAT duration (5%) Inter-event duration (5%) 

Inter-SAT duration (95%) Inter-event duration (95%) 

Temporal Theta Power None 

Activation Synchrony Index None 

Interhemispheric Correlation None 

Total Spectral Power None 

Relative Delta Power Relative Delta Power 

Relative Theta Power Relative Theta Power 

Relative Alpha Power Relative Alpha Power 

Relative Beta Power Relative Beta Power 

Shaded cells indicate features used in the development time prediction model. 
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